Constraints on Null Energy Condition Violation from Advanced LIGO and Advanced Virgo's First Three Observing Runs


Chen, Zu-Cheng, Liu, Lang


The null energy condition (NEC) is a cornerstone of general relativity, and its violation could leave observable imprints in the cosmic gravitational wave spectrum. Theoretical models suggest that NEC violations during inflation can amplify the primordial tensor power spectrum, leading to distinct features in the stochastic gravitational wave background (SGWB). In this work, we search for these NEC-violating signatures in the SGWB using data from Advanced LIGO and Advanced Virgo's first three observing runs. Our analysis reveals no statistically significant evidence of such signals, allowing us to place stringent upper limits on the tensor power spectrum amplitude, $P_{T,2}$, during the second inflationary stage. Specifically, we find that $P_{T,2} \lesssim 0.15$ at a $95\%$ confidence level. Notably, this upper limit is consistent with constraints derived from pulsar timing array observations, reinforcing the hypothesis that NEC violations during inflation could explain the signal detected by pulsar timing arrays. Our findings contribute to a deeper understanding of the early Universe and highlight the potential of current and future gravitational wave experiments in probing the physics of inflation and NEC violations.


Posterior distributions for the model parameters $\boldsymbol{\theta}_{\mathrm{GW}} \equiv (n_T, f_c, P_{T,2})$. The contours represent the $1\sigma$, $2\sigma$, and $3\sigma$ confidence levels in the two-dimensional plots.

Posterior distributions for the model parameters $\boldsymbol{\theta}_{\mathrm{GW}} \equiv (n_T, f_c, P_{T,2})$. The contours represent the $1\sigma$, $2\sigma$, and $3\sigma$ confidence levels in the two-dimensional plots.

  • [1] LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 [1411.4547].
  • [2] VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32 (2015) 024001 [1408.3978].
  • [3] KAGRA, VIRGO, LIGO Scientific collaboration, GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run, Phys. Rev. X 13 (2023) 041039 [2111.03606].
  • [4] X.-J. Zhu, E. Howell, T. Regimbau, D. Blair and Z.-H. Zhu, Stochastic Gravitational Wave Background from Coalescing Binary Black Holes, Astrophys. J. 739 (2011) 86 [1104.3565].
  • [5] X.-J. Zhu, E.J. Howell, D.G. Blair and Z.-H. Zhu, On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers, Mon. Not. Roy. Astron. Soc. 431 (2013) 882 [1209.0595].
  • [6] K. Crocker, T. Prestegard, V. Mandic, T. Regimbau, K. Olive and E. Vangioni, Systematic study of the stochastic gravitational-wave background due to stellar core collapse, Phys. Rev. D 95 (2017) 063015 [1701.02638].
  • [7] T.W.B. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67 (1980) 183.
  • [8] E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272.
  • [9] A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rept. Prog. Phys. 82 (2019) 076901 [1811.01948].
  • [10] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682.
  • [11] M.S. Turner, Detectability of inflation produced gravitational waves, Phys. Rev. D 55 (1997) R435 [astro-ph/9607066].
  • [12] R. Bar-Kana, Limits on direct detection of gravitational waves, Phys. Rev. D 50 (1994) 1157 [astro-ph/9401050].
  • [13] T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387.
  • [14] S. Sarangi and S.H.H. Tye, Cosmic string production towards the end of brane inflation, Phys. Lett. B 536 (2002) 185 [hep-th/0204074].
  • [15] T. Damour and A. Vilenkin, Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows, Phys. Rev. D 71 (2005) 063510 [hep-th/0410222].
  • [16] X. Siemens, V. Mandic and J. Creighton, Gravitational wave stochastic background from cosmic (super)strings, Phys. Rev. Lett. 98 (2007) 111101 [astro-ph/0610920].
  • [17] LIGO Scientific, Virgo, KAGRA collaboration, Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run, Phys. Rev. Lett. 126 (2021) 241102 [2101.12248].
  • [18] A. Vilenkin and A.E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and PseudoGoldstone Bosons, Phys. Rev. Lett. 48 (1982) 1867.
  • [19] P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156.
  • [20] KAGRA, Virgo, LIGO Scientific collaboration, Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run, Phys. Rev. D 104 (2021) 022004 [2101.12130].
  • [21] V.A. Rubakov, The Null Energy Condition and its violation, Phys. Usp. 57 (2014) 128 [1401.4024].
  • [22] Y. Cai, Y. Wan, H.-G. Li, T. Qiu and Y.-S. Piao, The Effective Field Theory of nonsingular cosmology, JHEP 01 (2017) 090 [1610.03400].
  • [23] P. Creminelli, D. Pirtskhalava, L. Santoni and E. Trincherini, Stability of Geodesically Complete Cosmologies, JCAP 11 (2016) 047 [1610.04207].
  • [24] Y. Cai, H.-G. Li, T. Qiu and Y.-S. Piao, The Effective Field Theory of nonsingular cosmology: II, Eur. Phys. J. C 77 (2017) 369 [1701.04330].
  • [25] Y. Cai and Y.-S. Piao, A covariant Lagrangian for stable nonsingular bounce, JHEP 09 (2017) 027 [1705.03401].
  • [26] R. Kolevatov, S. Mironov, N. Sukhov and V. Volkova, Cosmological bounce and Genesis beyond Horndeski, JCAP 08 (2017) 038 [1705.06626].
  • [27] A. Ilyas, M. Zhu, Y. Zheng and Y.-F. Cai, Emergent Universe and Genesis from the DHOST Cosmology, JHEP 01 (2021) 141 [2009.10351].
  • [28] A. Ilyas, M. Zhu, Y. Zheng, Y.-F. Cai and E.N. Saridakis, DHOST Bounce, JCAP 09 (2020) 002 [2002.08269].
  • [29] M. Zhu and Y. Zheng, Improved DHOST Genesis, JHEP 11 (2021) 163 [2109.05277].
  • [30] Y. Cai, M. Zhu and Y.-S. Piao, Primordial black holes from null energy condition violation during inflation, 2305.10933.
  • [31] M. Libanov, S. Mironov and V. Rubakov, Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis, JCAP 08 (2016) 037 [1605.05992].
  • [32] T. Kobayashi, Generic instabilities of nonsingular cosmologies in Horndeski theory: A no-go theorem, Phys. Rev. D 94 (2016) 043511 [1606.05831].
  • [33] A. Ijjas and P.J. Steinhardt, Fully stable cosmological solutions with a non-singular classical bounce, Phys. Lett. B 764 (2017) 289 [1609.01253].
  • [34] D.A. Dobre, A.V. Frolov, J.T. Gálvez Ghersi, S. Ramazanov and A. Vikman, Unbraiding the Bounce: Superluminality around the Corner, JCAP 03 (2018) 020 [1712.10272].
  • [35] M. Zhu, A. Ilyas, Y. Zheng, Y.-F. Cai and E.N. Saridakis, Scalar and tensor perturbations in DHOST bounce cosmology, JCAP 11 (2021) 045 [2108.01339].
  • [36] Y. Cai, J. Xu, S. Zhao and S. Zhou, Perturbative unitarity and NEC violation in genesis cosmology, JHEP 10 (2022) 140 [2207.11772].
  • [37] Y. Cai and Y.-S. Piao, Intermittent null energy condition violations during inflation and primordial gravitational waves, Phys. Rev. D 103 (2021) 083521 [2012.11304].
  • [38] Y. Cai and Y.-S. Piao, Generating enhanced primordial GWs during inflation with intermittent violation of NEC and diminishment of GW propagating speed, JHEP 06 (2022) 067 [2201.04552].
  • [39] G. Ye, M. Zhu and Y. Cai, Null energy condition violation during inflation and pulsar timing array observations, JHEP 02 (2024) 008 [2312.10685].
  • [40] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].
  • [41] M.S. Turner, M.J. White and J.E. Lidsey, Tensor perturbations in inflationary models as a probe of cosmology, Phys. Rev. D 48 (1993) 4613 [astro-ph/9306029].
  • [42] J.D. Romano and N.J. Cornish, Detection methods for stochastic gravitational-wave backgrounds: a unified treatment, Living Rev. Rel. 20 (2017) 2 [1608.06889].
  • [43] B. Allen and J.D. Romano, Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev. D 59 (1999) 102001 [gr-qc/9710117].
  • [44] V. Mandic, E. Thrane, S. Giampanis and T. Regimbau, Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background, Phys. Rev. Lett. 109 (2012) 171102 [1209.3847].
  • [45] G. Ashton et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. 241 (2019) 27 [1811.02042].
  • [46] I.M. Romero-Shaw et al., Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue, Mon. Not. Roy. Astron. Soc. 499 (2020) 3295 [2006.00714].
  • [47] J.S. Speagle, dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences, Mon. Not. Roy. Astron. Soc. 493 (2020) 3132 [1904.02180].
  • [48] P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies, JHEP 12 (2006) 080 [hep-th/0606090].