Hot New Early Dark Energy bridging cosmic gaps: Supercooled phase transition reconciles (stepped) dark radiation solutions to the Hubble tension with BBN

Author(s)

Garny, Mathias, Niedermann, Florian, Rubira, Henrique, Sloth, Martin S.

Abstract

We propose a simple model that can alleviate the $H_0$ tension while remaining consistent with big bang nucleosynthesis (BBN). It is based on a dark sector described by a standard Lagrangian featuring a $SU(N)$ gauge symmetry with $N\geq3$ and a massive scalar field with a quartic coupling. The scalar acts as dark Higgs leading to spontaneous symmetry breaking $SU(N)\to SU(N\!-\!1)$ via a first-order phase transition à la Coleman-Weinberg. This set-up naturally realizes previously proposed scenarios featuring strongly interacting dark radiation (SIDR) with a mass threshold within hot new early dark energy (NEDE). For a wide range of reasonable model parameters, the phase transition occurs between the BBN and recombination epochs and releases a sufficient amount of latent heat such that the model easily respects bounds on extra radiation during BBN while featuring a sufficient SIDR density around recombination for increasing the value of $H_0$ inferred from the cosmic microwave background. Our model can be summarized as a natural mechanism providing two successive increases in the effective number of relativistic degrees of freedom after BBN but before recombination $\Delta N_\mathrm{BBN} \to \Delta N_\mathrm{NEDE} \to \Delta N_\mathrm{IR}$ alleviating the Hubble tension. The first step is related to the phase transition and the second to the dark Higgs becoming non-relativistic. This set-up predicts further signatures, including a stochastic gravitational wave background and features in the matter power spectrum that can be searched for with future pulsar timing and Lyman-$\alpha$ forest measurements.

Figures

Energy density of different dark sector components in units of $\rho_ {1,\nu} \equiv \frac{7}{4}\frac{\pi^2}{30} \left(\frac{4}{11}\right)^{4/3}T_{\rm vis}^4$. The blue line depicts the evolution of the total dark sector energy density, composed of the dark radiation plasma formed by the gauge (green line) and Higgs (red line) bosons as well as the latent heat $\rho_{\rm NEDE}$ (orange line and area), that rises above the radiation fluid before the supercooled phase transition. The purple line depicts $\Delta N_{\rm eff}$ before and after the phase transition at $a_*$, respectively, see \eqref{eq:rho_before} and \eqref{eq:rho_after}. The red shaded area illustrates BBN constraints, and the green area values of $\Delta N_{\rm eff}$ required for addressing the $H_0$ tension. For comparison grey dotted and dashed lines show the SIDR model and its stepped version named WZDR~\cite{Aloni:2021eaq} (see Sec.~\ref{introduction}).

Energy density of different dark sector components in units of $\rho_ {1,\nu} \equiv \frac{7}{4}\frac{\pi^2}{30} \left(\frac{4}{11}\right)^{4/3}T_{\rm vis}^4$. The blue line depicts the evolution of the total dark sector energy density, composed of the dark radiation plasma formed by the gauge (green line) and Higgs (red line) bosons as well as the latent heat $\rho_{\rm NEDE}$ (orange line and area), that rises above the radiation fluid before the supercooled phase transition. The purple line depicts $\Delta N_{\rm eff}$ before and after the phase transition at $a_*$, respectively, see \eqref{eq:rho_before} and \eqref{eq:rho_after}. The red shaded area illustrates BBN constraints, and the green area values of $\Delta N_{\rm eff}$ required for addressing the $H_0$ tension. For comparison grey dotted and dashed lines show the SIDR model and its stepped version named WZDR~\cite{Aloni:2021eaq} (see Sec.~\ref{introduction}).


Evolution of $\Delta N_{\rm eff}$, temperature ratio $\xi_d=T_d/T_{\rm vis}$, entropy ratio $s_d/s_{\rm vis}$ and equation of state $w=p_d/\rho_d$ for $SU(N)\to SU(N\!-\!1)$ with $N=3,4,5$. All are discontinuous at the phase transition at $a_*$ (first step), while only the entropy is conserved once the dark Higgs becomes non-relativistic at $a_t$ (second step). The second step disappears in the large-$N$ limit. Note that for a growing number of degrees of freedom $g_d$ (i.e. for $N=3,4,5$), the temperature $T_d$ decreases while $s_d\propto g_dT_d^3$ increases with $g_d$ for given $\Delta N_{\rm IR}\propto g_dT_d^4$.

Evolution of $\Delta N_{\rm eff}$, temperature ratio $\xi_d=T_d/T_{\rm vis}$, entropy ratio $s_d/s_{\rm vis}$ and equation of state $w=p_d/\rho_d$ for $SU(N)\to SU(N\!-\!1)$ with $N=3,4,5$. All are discontinuous at the phase transition at $a_*$ (first step), while only the entropy is conserved once the dark Higgs becomes non-relativistic at $a_t$ (second step). The second step disappears in the large-$N$ limit. Note that for a growing number of degrees of freedom $g_d$ (i.e. for $N=3,4,5$), the temperature $T_d$ decreases while $s_d\propto g_dT_d^3$ increases with $g_d$ for given $\Delta N_{\rm IR}\propto g_dT_d^4$.


Impact of BBN constraint on a simple SIDR model with constant $\Delta N_{\rm eff}$. Orange contours show $68\%$ C.L. and $95\%$ C.L. marginalized posteriors when including the BBN prior on $\Delta N_{\rm eff}$ and using the corresponding helium abundance predicted by BBN. The red contours show for comparison the case when ignoring BBN constraints and setting the helium fraction to the value found for $\Lambda$CDM ($Y_p = 0.2454$) by hand, as done in previous analyses. Filled contours correspond to the case without SH$0$ES, and open dotted contours illustrate the impact of including SH$0$ES. We observe that BBN disqualifies SIDR models without post-BBN heating mechanism for addressing the $H_0$ tension.

Impact of BBN constraint on a simple SIDR model with constant $\Delta N_{\rm eff}$. Orange contours show $68\%$ C.L. and $95\%$ C.L. marginalized posteriors when including the BBN prior on $\Delta N_{\rm eff}$ and using the corresponding helium abundance predicted by BBN. The red contours show for comparison the case when ignoring BBN constraints and setting the helium fraction to the value found for $\Lambda$CDM ($Y_p = 0.2454$) by hand, as done in previous analyses. Filled contours correspond to the case without SH$0$ES, and open dotted contours illustrate the impact of including SH$0$ES. We observe that BBN disqualifies SIDR models without post-BBN heating mechanism for addressing the $H_0$ tension.


Comparison between the $\Lambda$CDM (blue), SIDR (orange), and Hot NEDE (green) $68\%$ C.L. and $95\%$ C.L. marginalized posteriors, with BBN information included in all cases, and without (filled) and with (open dotted) including SH$0$ES. Only Hot NEDE is marginally compatible with the SH$0$ES value of $h$ (gray vertical band).

Comparison between the $\Lambda$CDM (blue), SIDR (orange), and Hot NEDE (green) $68\%$ C.L. and $95\%$ C.L. marginalized posteriors, with BBN information included in all cases, and without (filled) and with (open dotted) including SH$0$ES. Only Hot NEDE is marginally compatible with the SH$0$ES value of $h$ (gray vertical band).


Posteriors when including the redshift of the dark sector phase transition $z_\ast$ as a free parameter, compared to the fiducial case with fixed $z_\ast=10^6$. Including $z_\ast$ does not affect the posteriors of the other model parameters, and provides us with a lower bound $z_\ast > 4.4 \times 10^4 $ ($95\%$ C.L.).

Posteriors when including the redshift of the dark sector phase transition $z_\ast$ as a free parameter, compared to the fiducial case with fixed $z_\ast=10^6$. Including $z_\ast$ does not affect the posteriors of the other model parameters, and provides us with a lower bound $z_\ast > 4.4 \times 10^4 $ ($95\%$ C.L.).


Gravitational wave spectrum generated in the first-order phase transition using the envelope approximation. We show an estimated prediction for a benchmark scenario (black) and the impact when varying one of the parameters (other lines, see legend). We also include NANOGrav 15yr results from~\cite{NANOGrav:2023gor} and the expected sensitivity of SKA after 20 years of data.

Gravitational wave spectrum generated in the first-order phase transition using the envelope approximation. We show an estimated prediction for a benchmark scenario (black) and the impact when varying one of the parameters (other lines, see legend). We also include NANOGrav 15yr results from~\cite{NANOGrav:2023gor} and the expected sensitivity of SKA after 20 years of data.


CMB $C_{\ell}^{TT}$ (upper panel) and matter power spectra $P(k)$ (lower panel) for Hot NEDE models with various $z_\ast$ and $r_g$, normalized to $\Lambda$CDM. In all cases, we use the bestfit (base+BBN$+H_0$) parameters obtained for Hot NEDE with $z_\ast = 10^6,\, r_g = 0$ and match $\Delta N_{\rm IR} = 0.40$ for SIDR. Compatibility with Planck requires $z_\ast\gtrsim 10^5$, while for  $z_\ast \lesssim 10^6$ Lyman-$\alpha$ scales overlap with the onset (yellow dashed) or even the first peaks (yellow dotted) of the dark sector acoustic oscillations. The grey area represents the region probed by Lyman-$\alpha$ forest data.

CMB $C_{\ell}^{TT}$ (upper panel) and matter power spectra $P(k)$ (lower panel) for Hot NEDE models with various $z_\ast$ and $r_g$, normalized to $\Lambda$CDM. In all cases, we use the bestfit (base+BBN$+H_0$) parameters obtained for Hot NEDE with $z_\ast = 10^6,\, r_g = 0$ and match $\Delta N_{\rm IR} = 0.40$ for SIDR. Compatibility with Planck requires $z_\ast\gtrsim 10^5$, while for $z_\ast \lesssim 10^6$ Lyman-$\alpha$ scales overlap with the onset (yellow dashed) or even the first peaks (yellow dotted) of the dark sector acoustic oscillations. The grey area represents the region probed by Lyman-$\alpha$ forest data.


CMB $C_{\ell}^{TT}$ (upper panel) and matter power spectra $P(k)$ (lower panel) for Hot NEDE models with various $z_\ast$ and $r_g$, normalized to $\Lambda$CDM. In all cases, we use the bestfit (base+BBN$+H_0$) parameters obtained for Hot NEDE with $z_\ast = 10^6,\, r_g = 0$ and match $\Delta N_{\rm IR} = 0.40$ for SIDR. Compatibility with Planck requires $z_\ast\gtrsim 10^5$, while for  $z_\ast \lesssim 10^6$ Lyman-$\alpha$ scales overlap with the onset (yellow dashed) or even the first peaks (yellow dotted) of the dark sector acoustic oscillations. The grey area represents the region probed by Lyman-$\alpha$ forest data.

CMB $C_{\ell}^{TT}$ (upper panel) and matter power spectra $P(k)$ (lower panel) for Hot NEDE models with various $z_\ast$ and $r_g$, normalized to $\Lambda$CDM. In all cases, we use the bestfit (base+BBN$+H_0$) parameters obtained for Hot NEDE with $z_\ast = 10^6,\, r_g = 0$ and match $\Delta N_{\rm IR} = 0.40$ for SIDR. Compatibility with Planck requires $z_\ast\gtrsim 10^5$, while for $z_\ast \lesssim 10^6$ Lyman-$\alpha$ scales overlap with the onset (yellow dashed) or even the first peaks (yellow dotted) of the dark sector acoustic oscillations. The grey area represents the region probed by Lyman-$\alpha$ forest data.


Posteriors exploring the second step at redshift $z_t$ for which the dark Higgs becomes non-relativistic after the phase transition at $z_\ast$ in the Hot NEDE model. We compare the model considered in the main text with step size $r_g = 0$ (green contours) and another one where $r_g$ and $z_t$ are sampled (orange contours). While $r_g$ is bounded from above, $z_t$ is hardly constrained at all, in agreement with findings in the literature for stepped SIDR models~\cite{Allali:2023zbi}.

Posteriors exploring the second step at redshift $z_t$ for which the dark Higgs becomes non-relativistic after the phase transition at $z_\ast$ in the Hot NEDE model. We compare the model considered in the main text with step size $r_g = 0$ (green contours) and another one where $r_g$ and $z_t$ are sampled (orange contours). While $r_g$ is bounded from above, $z_t$ is hardly constrained at all, in agreement with findings in the literature for stepped SIDR models~\cite{Allali:2023zbi}.


References
  • [1] E. Abdalla et al., Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies, JHEAp 34, 49 (2022), arXiv:2203.06142 [astro-ph.CO].
  • [2] A. G. Riess, G. S. Anand, W. Yuan, S. Casertano, A. Dolphin, L. M. Macri, L. Breuval, D. Scolnic, M. Perrin, and I. R. Anderson, JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension at 8σ Confidence, Astrophys. J. Lett. 962, L17 (2024), arXiv:2401.04773 [astro-ph.CO].
  • [3] J. L. Bernal, L. Verde, and A. G. Riess, The trouble with H0, JCAP 10, 019, arXiv:1607.05617 [astro-ph.CO].
  • [4] L. Knox and M. Millea, Hubble constant hunter’s guide, Phys. Rev. D 101, 043533 (2020), arXiv:1908.03663 [astro-ph.CO].
  • [5] M. A. Buen-Abad, G. Marques-Tavares, and M. Schmaltz, Non-Abelian dark matter and dark radiation, Phys. Rev. D 92, 023531 (2015), arXiv:1505.03542 [hep-ph]. 20 Note that the energy conservation equation dρd/dt + 3H(ρd + pd) = 0 in the dark sector is also automatically satisfied in this case. We can rewrite it as a dx da dρd dx = −3(ρd + pd). Writing the entropy equation as x(ρd + pd) ∝ 1/a3 and taking a derivative of this equation with respect to a, one can check that energy conservation requires that ρd + pd + xdpd dx = 0. This is satisfied for the contribution from gauge bosons. For the Higgs, it requires ρ̂−p̂+ x 3 dp̂ dx = 0. Using explicit expressions from above, one sees that this is indeed satisfied.
  • [6] M. A. Buen-Abad, M. Schmaltz, J. Lesgourgues, and T. Brinckmann, Interacting Dark Sector and Precision Cosmology, JCAP 01, 008, arXiv:1708.09406 [astroph.CO].
  • [7] M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, and T. Tram, Sterile neutrino self-interactions: H0 tension and short-baseline anomalies, JCAP 12, 029, arXiv:2006.12885 [astro-ph.CO].
  • [8] D. Aloni, A. Berlin, M. Joseph, M. Schmaltz, and N. Weiner, A Step in understanding the Hubble tension, Phys. Rev. D 105, 123516 (2022), arXiv:2111.00014 [astro-ph.CO].
  • [9] N. Schöneberg and G. Franco Abellán, A step in the right direction? Analyzing the Wess Zumino Dark Radiation solution to the Hubble tension, JCAP 12, 001, arXiv:2206.11276 [astro-ph.CO].
  • [10] M. A. Buen-Abad, Z. Chacko, C. Kilic, G. MarquesTavares, and T. Youn, Stepped partially acoustic dark matter, large scale structure, and the Hubble tension, JHEP 06, 012, arXiv:2208.05984 [hep-ph].
  • [11] I. J. Allali, F. Rompineve, and M. P. Hertzberg, Dark sectors with mass thresholds face cosmological datasets, Phys. Rev. D 108, 023527 (2023), arXiv:2305.14166 [astro-ph.CO].
  • [12] A. Berlin and N. Blinov, Thermal Dark Matter Below an MeV, Phys. Rev. Lett. 120, 021801 (2018), arXiv:1706.07046 [hep-ph].
  • [13] M. Berbig, S. Jana, and A. Trautner, The Hubble tension and a renormalizable model of gauged neutrino self-interactions, Phys. Rev. D 102, 115008 (2020), arXiv:2004.13039 [hep-ph].
  • [14] M. Escudero, T. Schwetz, and J. Terol-Calvo, A seesaw model for large neutrino masses in concordance with cosmology, JHEP 02, 142, arXiv:2211.01729 [hep-ph].
  • [15] D. Aloni, M. Joseph, M. Schmaltz, and N. Weiner, Dark Radiation from Neutrino Mixing after Big Bang Nucleosynthesis, Phys. Rev. Lett. 131, 221001 (2023), arXiv:2301.10792 [astro-ph.CO].
  • [16] F. Niedermann and M. S. Sloth, Hot new early dark energy, Phys. Rev. D 105, 063509 (2022), arXiv:2112.00770 [hep-ph].
  • [17] F. Niedermann and M. S. Sloth, Hot new early dark energy: Towards a unified dark sector of neutrinos, dark energy and dark matter, Phys. Lett. B 835, 137555 (2022), arXiv:2112.00759 [hep-ph].
  • [18] E. Witten, Cosmological Consequences of a Light Higgs Boson, Nucl. Phys. B 177, 477 (1981).
  • [19] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7, 1888 (1973).
  • [20] F. Niedermann and M. S. Sloth, New early dark energy, Phys. Rev. D 103, L041303 (2021), arXiv:1910.10739 [astro-ph.CO].
  • [21] F. Niedermann and M. S. Sloth, Resolving the Hubble tension with new early dark energy, Phys. Rev. D 102, 063527 (2020), arXiv:2006.06686 [astro-ph.CO].
  • [22] F. Niedermann and M. S. Sloth, New Early Dark Energy as a solution to the H0 and S8 tensions, in The Hubble constant tension, edited by E. di Valentino and D. Brout (Springer, Singapore, 2024) arXiv:2307.03481 [hep-ph].
  • [23] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122, 221301 (2019), arXiv:1811.04083 [astro-ph.CO].
  • [24] V. Poulin, T. L. Smith, and T. Karwal, The Ups and Downs of Early Dark Energy solutions to the Hubble tension: A review of models, hints and constraints circa 2023, Phys. Dark Univ. 42, 101348 (2023), arXiv:2302.09032 [astro-ph.CO].
  • [25] J. S. Cruz, F. Niedermann, and M. S. Sloth, NANOGrav meets Hot New Early Dark Energy and the origin of neutrino mass, Phys. Lett. B 846, 138202 (2023), arXiv:2307.03091 [astro-ph.CO].
  • [26] J. S. Cruz, F. Niedermann, and M. S. Sloth, Cold New Early Dark Energy pulls the trigger on the H0 and S8 tensions: a simultaneous solution to both tensions without new ingredients, JCAP 11, 033, arXiv:2305.08895 [astro-ph.CO].
  • [27] T.-H. Yeh, J. Shelton, K. A. Olive, and B. D. Fields, Probing physics beyond the standard model: limits from BBN and the CMB independently and combined, JCAP 10, 046, arXiv:2207.13133 [astro-ph.CO].
  • [28] N. Schöneberg, The 2024 bbn baryon abundance update (2024), arXiv:2401.15054 [astro-ph.CO].
  • [29] D. Baumann, D. Green, and B. Wallisch, Searching for light relics with large-scale structure, JCAP 08, 029, arXiv:1712.08067 [astro-ph.CO].
  • [30] M. Archidiacono, S. Hannestad, R. S. Hansen, and T. Tram, Cosmology with self-interacting sterile neutrinos and dark matter - A pseudoscalar model, Phys. Rev. D 91, 065021 (2015), arXiv:1404.5915 [astro-ph.CO].
  • [31] S.-P. Li and X.-J. Xu, Production rates of dark photons and Z’ in the Sun and stellar cooling bounds, JCAP 09, 009, arXiv:2304.12907 [hep-ph].
  • [32] K. Yamamoto, Phase Transition Associated With Intermediate Gauge Symmetry Breaking in Superstring Models, Phys. Lett. B 168, 341 (1986).
  • [33] T. Barreiro, E. J. Copeland, D. H. Lyth, and T. Prokopec, Some aspects of thermal inflation: The Finite temperature potential and topological defects, Phys. Rev. D 54, 1379 (1996), arXiv:hep-ph/9602263.
  • [34] E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13, 3333 (1976).
  • [35] S. Iso, P. D. Serpico, and K. Shimada, QCDElectroweak First-Order Phase Transition in a Supercooled Universe, Phys. Rev. Lett. 119, 141301 (2017), arXiv:1704.04955 [hep-ph].
  • [36] N. Levi, T. Opferkuch, and D. Redigolo, The supercooling window at weak and strong coupling, JHEP 02, 125, arXiv:2212.08085 [hep-ph].
  • [37] A. Salvio, Supercooling in radiative symmetry breaking: theory extensions, gravitational wave detection and primordial black holes, JCAP 12, 046, arXiv:2307.04694 [hep-ph].
  • [38] M. Kierkla, B. Swiezewska, T. V. I. Tenkanen, and J. van de Vis, Gravitational waves from supercooled phase transitions: dimensional transmutation meets dimensional reduction, JHEP 02, 234, arXiv:2312.12413 [hep-ph].
  • [39] K. Freese and M. W. Winkler, Dark matter and gravitational waves from a dark big bang, Phys. Rev. D 107, 083522 (2023), arXiv:2302.11579 [astro-ph.CO].
  • [40] A. H. Guth and E. J. Weinberg, Could the Universe Have Recovered from a Slow First Order Phase Transition?, Nucl. Phys. B 212, 321 (1983).
  • [41] L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9, 3320 (1974).
  • [42] M. Dine, R. G. Leigh, P. Y. Huet, A. D. Linde, and D. A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46, 550 (1992), arXiv:hepph/9203203.
  • [43] P. B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47, 3546 (1993), [Erratum: Phys.Rev.D 50, 6662 (1994)], arXiv:hep-ph/9212235.
  • [43] P. B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47, 3546 (1993), [Erratum: Phys.Rev.D 50, 6662 (1994)], arXiv:hep-ph/9212235.
  • [44] O. Gould and T. V. I. Tenkanen, On the perturbative expansion at high temperature and implications for cosmological phase transitions, JHEP 06, 069, arXiv:2104.04399 [hep-ph].
  • [45] D. Bodeker and G. D. Moore, Can electroweak bubble walls run away?, JCAP 05, 009, arXiv:0903.4099 [hepph].
  • [46] D. Bodeker and G. D. Moore, Electroweak Bubble Wall Speed Limit, JCAP 05, 025, arXiv:1703.08215 [hep-ph].
  • [47] P. Athron, C. Balázs, and L. Morris, Supercool subtleties of cosmological phase transitions, JCAP 03, 006, arXiv:2212.07559 [hep-ph].
  • [48] J. Ellis, M. Lewicki, and V. Vaskonen, Updated predictions for gravitational waves produced in a strongly supercooled phase transition, JCAP 11, 020, arXiv:2007.15586 [astro-ph.CO].
  • [49] Y. Gouttenoire, R. Jinno, and F. Sala, Friction pressure on relativistic bubble walls, JHEP 05, 004, arXiv:2112.07686 [hep-ph].
  • [50] R. Jinno, T. Konstandin, and H. Rubira, A hybrid simulation of gravitational wave production in first-order phase transitions, JCAP 04, 014, arXiv:2010.00971 [astro-ph.CO].
  • [51] R. Jinno, T. Konstandin, H. Rubira, and J. van de Vis, Effect of density fluctuations on gravitational wave production in first-order phase transitions, JCAP 12 (12), 019, arXiv:2108.11947 [astro-ph.CO].
  • [52] R. Jinno, T. Konstandin, H. Rubira, and I. Stomberg, Higgsless simulations of cosmological phase transitions and gravitational waves, JCAP 02, 011, arXiv:2209.04369 [astro-ph.CO].
  • [53] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112, 041301 (2014), arXiv:1304.2433 [hep-ph].
  • [54] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D92, 123009 (2015), arXiv:1504.03291 [astro-ph.CO].
  • [55] M. Hindmarsh, Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe, Phys. Rev. Lett. 120, 071301 (2018), arXiv:1608.04735 [astro-ph.CO].
  • [56] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96, 103520 (2017), [Erratum: Phys.Rev.D 101, 089902 (2020)], arXiv:1704.05871 [astro-ph.CO].
  • [56] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96, 103520 (2017), [Erratum: Phys.Rev.D 101, 089902 (2020)], arXiv:1704.05871 [astro-ph.CO].
  • [57] C. Caprini, R. Durrer, and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12, 024, arXiv:0909.0622 [astro-ph.CO].
  • [58] D. Cutting, M. Hindmarsh, and D. J. Weir, Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions, Phys. Rev. Lett. 125, 021302 (2020), arXiv:1906.00480 [hep-ph].
  • [59] P. Auclair, C. Caprini, D. Cutting, M. Hindmarsh, K. Rummukainen, D. A. Steer, and D. J. Weir, Generation of gravitational waves from freely decaying turbulence, JCAP 09, 029, arXiv:2205.02588 [astro-ph.CO].
  • [60] C. Caprini and D. G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO].
  • [61] W. J. Marciano, C. Zhang, and S. Willenbrock, Higgs Decay to Two Photons, Phys. Rev. D 85, 013002 (2012), arXiv:1109.5304 [hep-ph].
  • [62] M. Garny, A. Palessandro, M. Sandora, and M. S. Sloth, Charged Planckian Interacting Dark Matter, JCAP 01, 021, arXiv:1810.01428 [hep-ph].
  • [63] A. Kurkela and E. Lu, Approach to Equilibrium in Weakly Coupled Non-Abelian Plasmas, Phys. Rev. Lett. 113, 182301 (2014), arXiv:1405.6318 [hep-ph].
  • [64] M. C. Abraao York, A. Kurkela, E. Lu, and G. D. Moore, UV cascade in classical Yang-Mills theory via kinetic theory, Phys. Rev. D 89, 074036 (2014), arXiv:1401.3751 [hep-ph].
  • [65] G. Elor, R. Jinno, S. Kumar, R. McGehee, and Y. Tsai, Finite bubble statistics constrain late cosmological phase transitions (2023), arXiv:2311.16222 [hepph].
  • [66] N. Deruelle and V. F. Mukhanov, On matching conditions for cosmological perturbations, Phys. Rev. D 52, 5549 (1995), arXiv:gr-qc/9503050.
  • [67] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44S10, 1 (1966), [Erratum: Nuovo Cim.B 48, 463 (1967)].
  • [68] C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455, 7 (1995), arXiv:astroph/9506072.
  • [69] W. Hu, Structure formation with generalized dark matter, Astrophys. J. 506, 485 (1998), arXiv:astroph/9801234.
  • [70] D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 07, 034, arXiv:1104.2933 [astroph.CO].
  • [71] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 1302, 001, arXiv:1210.7183 [astro-ph.CO].
  • [72] T. Brinckmann and J. Lesgourgues, Montepython 3: boosted mcmc sampler and other features (2018), arXiv:1804.07261 [astro-ph.CO].
  • [73] O. Pisanti, A. Cirillo, S. Esposito, F. Iocco, G. Mangano, G. Miele, and P. D. Serpico, PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements, Comput. Phys. Commun. 178, 956 (2008), arXiv:0705.0290 [astro-ph].
  • [74] N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
  • [74] N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
  • [75] N. Aghanim et al. (Planck), Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys. 641, A8 (2020), arXiv:1807.06210 [astro-ph.CO].
  • [76] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011), arXiv:1106.3366 [astro-ph.CO].
  • [77] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449, 835 (2015), arXiv:1409.3242 [astro-ph.CO].
  • [78] S. Alam et al. (BOSS), The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO].
  • [79] D. M. Scolnic et al. (Pan-STARRS1), The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO].
  • [80] A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s–1 Mpc–1 Uncertainty from the Hubble Space Telescope and the SH0ES Team, Astrophys. J. Lett. 934, L7 (2022), arXiv:2112.04510 [astro-ph.CO].
  • [81] M. Raveri and W. Hu, Concordance and Discordance in Cosmology, Phys. Rev. D 99, 043506 (2019), arXiv:1806.04649 [astro-ph.CO].
  • [82] A. R. Liddle, Information criteria for astrophysical model selection, Mon. Not. Roy. Astron. Soc. 377, L74 (2007), arXiv:astro-ph/0701113.
  • [83] N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S. J. Witte, V. Poulin, and J. Lesgourgues, The H0 Olympics: A fair ranking of proposed models, Phys. Rept. 984, 1 (2022), arXiv:2107.10291 [astro-ph.CO].
  • [84] M. Joseph, D. Aloni, M. Schmaltz, E. N. Sivarajan, and N. Weiner, A Step in understanding the S8 tension, Phys. Rev. D 108, 023520 (2023), arXiv:2207.03500 [astro-ph.CO].
  • [85] N. Schöneberg, G. Franco Abellán, T. Simon, A. Bartlett, Y. Patel, and T. L. Smith, Comparative analysis of interacting stepped dark radiation, Phys. Rev. D 108, 123513 (2023), arXiv:2306.12469 [astroph.CO].
  • [86] A. R. Khalife, M. B. Zanjani, S. Galli, S. Günther, J. Lesgourgues, and K. Benabed, Review of hubble tension solutions with new sh0es and spt-3g data (2024), arXiv:2312.09814 [astro-ph.CO].
  • [87] C. Garcı́a-Garcı́a, M. Zennaro, G. Aricò, D. Alonso, and R. E. Angulo, Cosmic shear with small scales: DESY3, KiDS-1000 and HSC-DR1 (2024), arXiv:2403.13794 [astro-ph.CO].
  • [88] S. J. Huber and T. Konstandin, Gravitational Wave Production by Collisions: More Bubbles, JCAP 09, 022, arXiv:0806.1828 [hep-ph].
  • [89] C. Caprini, R. Durrer, and G. Servant, Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach, Phys. Rev. D 77, 124015 (2008), arXiv:0711.2593 [astro-ph].
  • [90] C. Caprini, R. Durrer, T. Konstandin, and G. Servant, General Properties of the Gravitational Wave Spectrum from Phase Transitions, Phys. Rev. D 79, 083519 (2009), arXiv:0901.1661 [astro-ph.CO].
  • [91] D. J. Weir, Revisiting the envelope approximation: gravitational waves from bubble collisions, Phys. Rev. D 93, 124037 (2016), arXiv:1604.08429 [astro-ph.CO].
  • [92] R. Jinno and M. Takimoto, Gravitational waves from bubble collisions: An analytic derivation, Phys. Rev. D 95, 024009 (2017), arXiv:1605.01403 [astro-ph.CO].
  • [93] R. Jinno and M. Takimoto, Gravitational waves from bubble dynamics: Beyond the Envelope, JCAP 01, 060, arXiv:1707.03111 [hep-ph].
  • [94] T. Konstandin, Gravitational radiation from a bulk flow model, JCAP 03, 047, arXiv:1712.06869 [astro-ph.CO].
  • [95] C. J. Moore, R. H. Cole, and C. P. L. Berry, Gravitational-wave sensitivity curves, Class. Quant. Grav. 32, 015014 (2015), arXiv:1408.0740 [gr-qc].
  • [96] C. L. Carilli and S. Rawlings, Science with the Square Kilometer Array: Motivation, key science projects, standards and assumptions, New Astron. Rev. 48, 979 (2004), arXiv:astro-ph/0409274.
  • [97] G. Janssen et al., Gravitational wave astronomy with the SKA, PoS AASKA14, 037 (2015), arXiv:1501.00127 [astro-ph.IM].
  • [98] A. Weltman et al., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Austral. 37, e002 (2020), arXiv:1810.02680 [astro-ph.CO].
  • [99] G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE].
  • [100] T. Bringmann, P. F. Depta, T. Konstandin, K. SchmidtHoberg, and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11, 053, arXiv:2306.09411 [astro-ph.CO].
  • [101] D. Cutting, M. Hindmarsh, and D. J. Weir, Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, Phys. Rev. D 97, 123513 (2018), arXiv:1802.05712 [astro-ph.CO].
  • [102] D. Cutting, E. G. Escartin, M. Hindmarsh, and D. J. Weir, Gravitational waves from vacuum first order phase transitions II: from thin to thick walls, Phys. Rev. D 103, 023531 (2021), arXiv:2005.13537 [astro-ph.CO].
  • [103] D. Collaboration, The desi experiment part i: Science,targeting, and survey design (2016), arXiv:1611.00036 [astro-ph.IM].
  • [104] N. G. Karaçaylı, A. Font-Ribera, and N. Padmanabhan, Optimal 1D Ly α forest power spectrum estimation – I. DESI-lite spectra, Mon. Not. Roy. Astron. Soc. 497, 4742 (2020), arXiv:2008.06421 [astro-ph.CO].
  • [105] M. Walther, E. Armengaud, C. Ravoux, N. PalanqueDelabrouille, C. Yèche, and Z. Lukić, Simulating intergalactic gas for DESI-like small scale Lymanα forest observations, JCAP 04, 059, arXiv:2012.04008 [astroph.CO].
  • [106] N. G. Karaçaylı et al., Optimal 1D Lyα Forest Power Spectrum Estimation – III. DESI early data, Mon. Not. Roy. Astron. Soc. 528, 3941 (2024), arXiv:2306.06316 [astro-ph.CO].
  • [107] H. Rubira, A. Mazoun, and M. Garny, Full-shape BOSS constraints on dark matter interacting with dark radiation and lifting the S8 tension, JCAP 01, 034, arXiv:2209.03974 [astro-ph.CO].
  • [108] A. Mazoun, S. Bocquet, M. Garny, J. J. Mohr, H. Rubira, and S. M. L. Vogt, Probing interacting dark sector models with future weak lensing-informed galaxy cluster abundance constraints from SPT-3G and CMBS4, Phys. Rev. D 109, 063536 (2024), arXiv:2312.17622 [astro-ph.CO].
  • [109] M. Garny, M. Sandora, and M. S. Sloth, Planckian Interacting Massive Particles as Dark Matter, Phys. Rev. Lett. 116, 101302 (2016), arXiv:1511.03278 [hep-ph].