Author(s)
Lopes, Luiz L., Jimenez, Jose C., Castro, Luis B., Flores, Cesar V.Abstract
We investigated the radial and non-radial fundamental ($f$) mode oscillations of self-bound (quark) stars obtained after employing the Vector MIT (vMIT) bag model. Within this model, we computed the equation of state for strange quark matter satisfying thermodynamic consistency. This allowed us to obtain the corresponding behavior of the speed of sound, mass-radius relation, and gravitational redshift. In particular, our choice of $G_V$ = 0.30 fm$^2$ produces masses and radii in agreement with recent astronomical data (e.g. from NICER and HESS J1731). In fact, we tested that variations of the remaining vMIT parameters slightly modify this conclusion. Then, we proceeded to compute the radial oscillation frequencies of the $f$-mode, which is tightly connected to the dynamical stability of these compact stars. We found that increments of the $G_V$ parameter have a stabilizing property around the maximal-mass stars for a given stellar family. We also calculated the gravitational-wave frequencies of the non-radial $f$-mode. Our results show that they are restricted to be in the range (1.6 - 1.8) kHz for high-mass stars and to (1.5 - 1.6) kHz for low-mass stars. Finally, we propose a universal relation between these frequencies and the square root of the average density. All these last results are important in distinguishing strange stars from ordinary neutron stars in future gravitational-wave detections coming from compact sources with activated non-radial modes.
Figures
(Color online) EoS (top) and the square of the speed of sound (bottom) for the three parametrizations discussed in the text.
(Color online) EoS (top) and the square of the speed of sound (bottom) for the three parametrizations discussed in the text.
Mass-radius diagram ($M_0$ is the Sun's mass) for SQM stars obtained by solving the TOV equations for the three parameterizations and constraints discussed in the main text.
The gravitational redshift `$z$' versus the SQM star's mass $M$ ($M_0$ is the Sun's mass) for different values of $G_V$.
The $f$-mode frequency ($\nu_0$) versus the gravitational mass $M$ ($M_0$ is the Sun's mass) for different values of $G_V$.
Non-radial $f$-mode frequencies (top) and damping time (bottom) versus the mass $M$ for different values of $G_V$.
Non-radial $f$-mode frequencies (top) and damping time (bottom) versus the mass $M$ for different values of $G_V$.
The frequency of the fundamental mode is plotted in the upper panel as a function of the square root of the average density for the different EoSs. The linear relation is satisfied for all three EoSs.
References
- [1] A. R. Bodmer, Collapsed nuclei, Phys. Rev. D 4, 1601 (1971).
- [2] E. Witten, Cosmic separation of phases, Phys. Rev. D 30, 272 (1984).
- [3] L. Lopes, C. Biesdorf, and D. Menezes, Modified mit bag models—part i: Thermodynamic consistency, stability windows and symmetry group, Phys. Scr. 96, 065303 (2021).
- [4] L. L. Lopes et al., Modified mit bag models—part ii: Qcd phase diagram and hot quark stars, Phys. Scr. 96, 065302 (2021).
- [5] H. T. Cromartie et al. (NANOGrav), Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar, Nature Astron. 4, 72 (2019), 1904.06759.
- [6] B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc].
- [7] M. Branchesi et al., Science with the Einstein Telescope: a comparison of different designs, JCAP 2023 (07), 068.
- [8] M. Evans et al., A Horizon Study for Cosmic Explorer: Science, Observatories, and Community, arXiv (2021), 2109.09882 [astro-ph.IM].
- [9] M. Colpi et al., LISA Definition Study Report, arXiv (2024), 2402.07571 [astro-ph.CO].
- [10] C. Flores, L. Lopes, L. Benito, and D. Menezes, Gravitational wave signatures of highly magnetized neutron stars, The European Physical Journal C 80, 1142 (2020).
- [11] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, New extended model of hadrons, Phys. Rev. D 9, 3471 (1974).
- [12] B. D. Serot, Quantum hadrodynamics, Rep. Progr. Phys. 55, 1855 (1992).
- [13] R. Furnstahl, B. D. Serot, and H.-B. Tang, Vacuum nucleon loops and naturalness, Nucl. Phys. A 618, 446 (1997).
- [14] R. O. Gomes, V. Dexheimer, S. Han, and S. Schramm, Can magnetic fields (de)stabilize twin stars?, Mont. Not. Roy. Astron. Soc. 485, 4873 (2019).
- [15] R. O. Gomes, P. Char, and S. Schramm, Constraining strangeness in dense matter with gw170817, Astrophys. J. 877, 139 (2019).
- [16] B. Franzon, R. O. Gomes, and S. Schramm, Effects of the quark-hadron phase transition on highly magnetized neutron stars, Mon. Not. Roy. Astron. Soc. 463, 571 (2016).
- [17] F. M. da Silva et al., Bayesian study of quark models in view of recent astrophysical constraints, Phys. Rev. D 109, 043054 (2024).
- [18] C. Biesdorf, L. L. Lopes, and D. P. Menezes, Qcd phase diagrams via qhd and mit-based models, Braz. J. Phys. 53, 137 (2023).
- [19] S. Altiparmak, C. Ecker, and L. Rezzolla, On the Sound Speed in Neutron Stars, Astrophys. J. Lett. 939, L34 (2022).
- [20] R. C. Tolman, Static solutions of einstein’s field equations for spheres of fluid, Phys. Rev. 55, 364 (1939).
- [21] J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55, 374 (1939).
- [22] T. E. Riley et al., A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation, Astrophys. J. Lett. 887, L21 (2019).
- [23] M. Miller et al., PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter, Astrophys. J. Lett. 887, L24 (2019).
- [24] M. Miller et al., The radius of PSR j0740+6620 from NICER and XMM-newton data, Astrophys. J. Lett. 918, L28 (2021).
- [25] D. Choudhury et al., A nicer view of the nearest and brightest millise (2024), arXiv:2407.06789 [astro-ph.HE].
- [26] T. Riley et al., A nicer view of the massive pulsar psr j0740+6620 informed by radio timing and xmm-newton spectroscopy, Astrophys. J. Lett. 918, L27 (2021).
- [27] V. Doroshenko, V. Suleimanov, G. Pühlhofer, and A. Santangelo, A strangely light neutron star within a supernova remnant, Nat. Astron. 6, 1444 (2022).
- [28] L. L. Lopes, The neutron star inner crust: An empirical essay, Europhys. Lett. 134, 52001 (2021).
- [29] J. P. Pereira, C. V. Flores, and G. Lugones, Phase Transition Effects on the Dynamical Stability of Hybrid Neutron Stars, Astrophys. J. 860, 12 (2018), arXiv:1706.09371 [gr-qc].
- [30] J. D. V. Arbañil, G. A. Carvalho, R. V. Lobato, R. M. Marinho, and M. Malheiro, Extra dimensions’ influence on the equilibrium and radial stability of strange quark stars, Phys. Rev. D 100, 024035 (2019), arXiv:1907.07661 [gr-qc].
- [31] J. M. Z. Pretel, Equilibrium, radial stability and non-adiabatic gravitational collapse of anisotropic neutron stars, European Physical Journal C 80, 726 (2020), arXiv:2008.05331 [gr-qc].
- [32] S. Chandrasekhar, The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity., Astrophys. J. 140, 417 (1964).
- [33] G. Chanmugam, Radial oscillations of zero-temperature white dwarfs and neutron stars below nuclear densities., Astrophys. J. 217, 799 (1977).
- [34] D. Gondek, P. Haensel, and J. L. Zdunik, Radial pulsations and stability of protoneutron stars, Astron. Astrophys. 325, 217 (1997).
- [35] C. Vásquez Flores and G. Lugones, Radial oscillations of color superconducting self-bound quark stars, Phys. Rev. D 82, 063006 (2010).
- [36] H. M. Vaeth and G. Chanmugam, Radial oscillations of neutron stars and strange stars, Astron. Astrophys. 260, 250 (1992).
- [37] D. Gondek-Rosinska and J. L. Zdunik, Avoided crossings in radial pulsations of neutron and strange stars, Astron. Astrophys. 344, 117 (1999).
- [38] M. Mariani, I. F. Ranea-Sandoval, G. Lugones, and M. G. Orsaria, Could a slow stable hybrid star explain the central compact object in HESS J1731-347?, Phys. Rev. D 110, 043026 (2024), arXiv:2407.06347 [astro-ph.HE].
- [39] S. Detweiler and L. Lindblom, On the nonradial pulsations of general relativistic stellar models, Astrophys. J. 292, 12 (1985).
- [40] J.-L. Lü and W.-M. Suen, Determining the long living quasi-normal modes of relativistic stars, Chinese Physics B 20, 040401 (2011).
- [41] N. Andersson and K. D. Kokkotas, Towards gravitational wave asteroseismology, Mon. Not. Roy. Astron. Soc. 299, 1059 (1998).
- [42] B. K. Pradhan, D. Chatterjee, M. Lanoye, and P. Jaikumar, General relativistic treatment of f-mode oscillations of hyperonic stars, Phys. Rev. C 106, 015805 (2022).
- [43] L. L. Lopes et al., Imprints of the nuclear symmetry energy slope in gravitational wave signals emanating from neutron stars, Phys. Rev. D 108, 083042 (2023).
- [44] O. Benhar, V. Ferrari, and L. Gualtieri, Gravitational wave asteroseismology reexamined, Phys. Rev. D 70, 124015 (2004).