Author(s)
Chen, Yunfeng, Yu, Qingjuan, Lu, YoujunAbstract
The gravitational waves (GWs) from supermassive binary black holes (BBHs) are long sought by pulsar timing array experiments (PTAs), in the forms of both a stochastic GW background (GWB) and individual sources. The evidence for a GWB was reported recently by several PTAs with origins to be determined. Here we use a BBH population synthesis model to investigate the detection probability of individual BBHs by the Chinese PTA (CPTA) and the constraint on the GWB origin that may be obtained by PTA observations of both GWB and individual BBHs. If the detected GWB signal is entirely due to BBHs, a significantly positive redshift evolution ($\propto(1+z)^{2.07}$) of the mass scaling relation between supermassive black holes and their host galaxies is required. In this case, we find that the detection probability of individual BBHs is $\sim85\%$ or 64% if using a period of 3.4-year CPTA observation data, with an expectation of $\sim1.9$ or 1.0 BBHs detectable with a signal-to-noise ratio $\geq3$ or $5$, and it is expected to increase to $>95\%$ if extending the observation period to $5$ years or longer. Even if the contribution from BBHs to the GWB power signal is as small as $\sim10\%$, a positive detection of individual BBHs can still be expected within an observation period of $\sim10$ years. A non-detection of individual BBHs within several years from now jointly with the detected GWB signal can put a strong constraint on the upper limit of the BBH contribution to the GWB signal and help identify/falsify a cosmological origin.
Figures
Reconstructed GWB spectra from the BBH population model constrained by the NANOGrav 15-year free-spectrum data (cyan and magenta lines). The grey violins are from \citet{NG23hd} and \cite{NG23constraint}, showing the square root of the cross-correlated timing residual power ($\rho$) in the left panel and the characteristic strain amplitude $h\rmc$ in the right panel, respectively, for the NANOGrav 15-year free-spectrum GWB posteriors obtained by assuming the HD-w/MP+DP+CURN model. The cyan line in each panel shows the reconstructed GWB spectra for the reference BBH population model, while the thin magenta lines show the resulting GWB spectra for 200 random draws from the posterior parameter distributions of $\talpha$, $\tomega$, and $\tepsilon$. Note that when constraining the BBH population model, only the leftmost five frequency-bin data are used, and the $-2/3$ power-law spectrum model has been assumed. See details in Section~\ref{sec:BBHmodel}.
Synthetic GWB strain spectra from cosmic BBHs generated from the reference BBH population model. The lower panel shows the GWB characteristic strain amplitude $h\rmc$ as a function of the GW frequency $f$ for 10 realizations of the cosmic BBHs (each one represented by a black curve with significant fluctuation at high frequencies). For comparison, the canonical $-2/3$ power-law strain spectrum for the same model is indicated by the cyan line. For each realization, the top contributor to $h\rmc$ within each NANOGrav frequency bin is marked by a red filled circle if that contributor dominates the frequency bin, while an open magenta circle if not. In the upper panel, the thin histogram shows the probability $P_{\rm dom}(f)$ that a given realization contains a dominant BBH source within a given NANOGrav frequency bin, and the thick dashed curve shows the cumulative probability $P_{\rm dom,cum}(f)$ that a given realization contains at least one dominant BBH source in all NANOGrav frequency bins left to a given frequency. Both probability distributions are evaluated based on $1000$ realizations generated from the reference BBH population model. The grey vertical lines in both panels denote the leftmost $14$ NANOGrav frequency bins. See details in Section~\ref{sec:detectability}.
Individual BBH sources in the $h_0$--$f$ plane. The lower panel shows the BBH sources in $10$ realizations generated from the reference BBH population model. For each realization, we record the top $30$ contributors to the synthetic GWB characteristic strain amplitude $h\rmc$ within each NANOGrav frequency bin (filled circles). Among them, those dominating the $h\rmc$ of their frequency bins are marked in red colors (they are the same sources as those red filled circles in Fig.~\ref{fig:GWBSynthesisHigh}). The green curve represents the 95\% upper limit on individual BBHs derived from the NANOGrav $15$-year data set \citep{NG23indv}, and the blue curve represents the sensitivity curve on individual sources for the adopted CPTA configuration assuming an S/N threshold of $3$. In the upper panel, the thin histogram shows the expected number of individual BBH sources detectable by CPTA in each NANOGrav frequency bin $\langle N\rangle(f)$, and the thick dashed curve shows the corresponding cumulative expected number of detectable sources $\langle N\rangle_{\rm cum}(f)$. Both quantities are the average evaluated based on $1000$ realizations of cosmic BBHs from the reference BBH population model. The grey vertical lines in each panel indicate the leftmost $14$ NANOGrav frequency bins, and the magenta vertical dashed lines denote the three frequencies explored by CPTA in \citet{CPTA23hd}. See details in Section~\ref{sec:detectability}.
Legends are the same as that for Fig.~\ref{fig:LoudConstrained}, except that the mock BBHs are generated from the BBH population model adopting the MBH-host galaxy relationship given by \citet{KH13}, which leads to a GWB with characteristic strain amplitude only a fraction $\sim 28\%$ of the detected GWB signal. See details in Section~\ref{sec:detectability}.
Expected constraints ($95\%$ upper limits) on the ratio of the BBH-induced GWB strain amplitude to the detected GWB strain amplitude $\calH_{\rm BBH}$, as a function of the CPTA observation time $T\obs$, if there is no detection of individual BBHs within $T\obs$. Red, green, and blue colors correspond to the cases in which the threshold $\snr$ for individual BBH detections are $\rhoth=3$, $5$, and $8$, respectively. The corresponding $\snr$ of the GWB detection by CPTA is shown by the top axis, and the BBH-induced characteristic strain amplitude at frequency $f=1\iyr$ is shown by the right axis. The vertical dotted line marks the $3.4\yr$ CPTA observation. See details in Section~\ref{sec:detectability}.
References
- Afzal, A., Agazie, G., Anumarlapudi, A., et al. 2023, ApJL, 951, L11. doi:10.3847/2041-8213/acdc91
- Agazie, G., Anumarlapudi, A., Archibald, A. M., et al.
- 2023, ApJL, 951, L8. doi:10.3847/2041-8213/acdac6
- 2023, ApJL, 951, L50. doi:10.3847/2041-8213/ace18a
- 2023, ApJL, 952, L37. doi:10.3847/2041-8213/ace18b
- Antoniadis, J., Arzoumanian, Z., Babak, S., et al. 2022, MNRAS. doi:10.1093/mnras/stab3418
- Antoniadis, J., Arumugam, P., Arumugam, S., et al. 2023, arXiv:2306.16214. doi:10.48550/arXiv.2306.16214
- Antoniadis, J., Arumugam, P., Arumugam, S., et al. 2023, arXiv:2306.16226. doi:10.48550/arXiv.2306.16226
- Antoniadis, J., Arumugam, P., Arumugam, S., et al. 2023, arXiv:2306.16227. doi:10.48550/arXiv.2306.16227
- Arzoumanian, Z., Baker, P. T., Blumer, H., et al. 2020, ApJL, 905, L34. doi:10.3847/2041-8213/abd401
- Bécsy, B., Cornish, N. J., Meyers, P. M., et al. 2023, arXiv:2309.04443. doi:10.48550/arXiv.2309.04443
- Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307. doi:10.1038/287307a0
- Behroozi, P., Wechsler, R. H., Hearin, A. P., et al. 2019, MNRAS, 488, 3143. doi:10.1093/mnras/stz1182
- Bian, L., Ge, S., Shu, J., et al. 2023, arXiv:2307.02376. doi:10.48550/arXiv.2307.02376
- Chen, S., Sesana, A., & Del Pozzo, W. 2017, MNRAS, 470, 1738. doi:10.1093/mnras/stx1093
- Chen, S., Caballero, R. N., Guo, Y. J., et al. 2021, MNRAS, 508, 4970. doi:10.1093/mnras/stab2833
- Chen, Y., Yu, Q., & Lu, Y. 2020, ApJ, 897, 86. doi:10.3847/1538-4357/ab9594 (CYL20)
- Chen, Y., Yu, Q., & Lu, Y. 2023, ApJ, 955, 132. doi:10.3847/1538-4357/ace59f
- Curylo, M. & Bulik, T. 2023, arXiv:2308.07720. doi:10.48550/arXiv.2308.07720
- Ellis, J., Fairbairn, M., Franciolini, G., et al. 2023, arXiv:2308.08546. doi:10.48550/arXiv.2308.08546
- Enoki, M. & Nagashima, M. 2007, Progress of Theoretical
- Physics, 117, 241. doi:10.1143/PTP.117.241
- Gardiner, E. C., Kelley, L. Z., Lemke, A.-M., et al. 2023, arXiv:2309.07227. doi:10.48550/arXiv.2309.07227
- Goncharov, B., Shannon, R. M., Reardon, D. J., et al. 2021, ApJL, 917, L19. doi:10.3847/2041-8213/ac17f4
- Guo, X., Lu, Y., & Yu, Q. 2022, ApJ, 939, 55. doi:10.3847/1538-4357/ac9131
- Hellings, R. W. & Downs, G. S. 1983, ApJL, 265, L39. doi:10.1086/183954
- Kelley, L. Z., Blecha, L., Hernquist, L., et al. 2018, MNRAS, 477, 964. doi:10.1093/mnras/sty689
- Kocsis, B. & Sesana, A. 2011, MNRAS, 411, 1467. doi:10.1111/j.1365-2966.2010.17782.x
- Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511. doi:10.1146/annurev-astro-082708-101811
- Maggiore, M. 2018, Gravitational Waves: Vol. 2, Astrophysics and cosmology (Oxford University Press)
- McConnell, N. J. & Ma, C.-P. 2013, ApJ, 764, 184. doi:10.1088/0004-637X/764/2/184
- McLure, R. J., Jarvis, M. J., Targett, T. A., et al. 2006, MNRAS, 368, 1395. doi:10.1111/j.1365-2966.2006.10228.x
- Merloni, A., Bongiorno, A., Bolzonella, M., et al. 2010, ApJ, 708, 137. doi:10.1088/0004-637X/708/1/137
- Mingarelli, C. M. F., Lazio, T. J. W., Sesana, A., et al.
- 2017, Nature Astronomy, 1, 886. doi:10.1038/s41550-017-0299-6
- Moore, C. J., Taylor, S. R., & Gair, J. R. 2015, Classical and Quantum Gravity, 32, 055004. doi:10.1088/0264-9381/32/5/055004
- Muhamed Kozhikkal, M., Chen, S., Theureau, G., et al.
- 2023, arXiv:2305.18293. doi:10.48550/arXiv.2305.18293
- Pacucci, F., Nguyen, B., Carniani, S., et al. 2023, ApJL, 957, L3. doi:10.3847/2041-8213/ad0158
- Phinney, E. S. 2001, astro-ph/0108028. doi:10.48550/arXiv.astro-ph/0108028
- Rajagopal, M. & Romani, R. W. 1995, ApJ, 446, 543. doi:10.1086/175813
- Rasskazov, A. & Merritt, D. 2017, PhRvD, 95, 084032. doi:10.1103/PhysRevD.95.084032
- Ravi, V., Wyithe, J. S. B., Shannon, R. M., et al. 2015, MNRAS, 447, 2772. doi:10.1093/mnras/stu2659
- Reardon, D. J., Zic, A., Shannon, R. M., et al. 2023, ApJL, 951, L6. doi:10.3847/2041-8213/acdd02
- Rodriguez-Gomez, V., Genel, S., Vogelsberger, M., et al.
- 2015, MNRAS, 449, 49. doi:10.1093/mnras/stv264
- Roebber, E., Holder, G., Holz, D. E., et al. 2016, ApJ, 819, 163. doi:10.3847/0004-637X/819/2/163
- Rosado, P. A., Sesana, A., & Gair, J. 2015, MNRAS, 451, 2417. doi:10.1093/mnras/stv1098
- Sesana, A., Vecchio, A., & Colacino, C. N. 2008, MNRAS, 390, 192. doi:10.1111/j.1365-2966.2008.13682.x
- Sesana, A., Vecchio, A., & Volonteri, M. 2009, MNRAS, 394, 2255. doi:10.1111/j.1365-2966.2009.14499.x
- Valtolina, S., Shaifullah, G., Samajdar, A., et al. 2023, arXiv:2309.13117. doi:10.48550/arXiv.2309.13117
- Xu, H., Chen, S., Guo, Y., et al. 2023, Research in
- Astronomy and Astrophysics, 23, 075024. doi:
- 10.1088/1674-4527/acdfa5
- Yu, Q. 2002, MNRAS, 331, 935. doi:10.1046/j.1365-8711.2002.05242.x
- Zhang, X., Lu, Y., & Yu, Q. 2012, ApJ, 761, 5. doi:10.1088/0004-637X/761/1/5