Author(s)
Dankovsky, I., Ramazanov, S., Babichev, E., Gorbunov, D., Vikman, A.Abstract
We study domain walls (DWs) arising in field theories where $Z_2$-symmetry is spontaneously broken by a scalar expectation value decreasing proportionally to the Universe temperature. The energy density of such melting DWs redshifts sufficiently fast not to overclose the Universe. For the first time, evolution of melting DWs and the resulting gravitational waves (GWs) is investigated numerically using lattice simulations. We show that formation of closed melting DWs during radiation domination is much more efficient compared to the scenario with constant tension DWs. This suggests that it can be the main mechanism responsible for reaching the scaling regime similarly to the case of cosmic strings. However, the scaling behaviour of melting DWs is observed, provided only that the initial scalar field fluctuations are not very large. Otherwise, simulations reveal violation of the scaling law, potentially of the non-physical origin. The spectrum of GWs emitted by melting DWs is also significantly different from that of constant tension DWs. Whether the system has reached scaling or not, the numerical study reveals a GW spectrum described in the infrared by the spectral index $n \approx 1.6$ followed by the causality tail. We attribute the difference from the value $n=2$ predicted in our previous studies to a finite lifetime of the DW network. Notably, the updated index is still in excellent agreement with the recent findings by pulsar timing arrays, which confirms that melting DWs can be responsible for the observed (GW) signal. We also point out that results for evolution of melting DWs in the radiation-dominated Universe are applicable to constant tension DW evolution in the flat spacetime.
Figures
Snapshots of melting DW evolution obtained with the $1024^3$ lattice in the case of vacuum initial conditions with $k_{cut}=1$. We use dimensionless units of Eq.~\eqref{redefinitions}.
Snapshots of melting DW evolution obtained with the $1024^3$ lattice in the case of vacuum initial conditions with $k_{cut}=1$. We use dimensionless units of Eq.~\eqref{redefinitions}.
Snapshots of melting DW evolution obtained with the $1024^3$ lattice in the case of vacuum initial conditions with $k_{cut}=1$. We use dimensionless units of Eq.~\eqref{redefinitions}.
Snapshots of melting DW evolution obtained with the $1024^3$ lattice in the case of vacuum initial conditions with $k_{cut}=1$. We use dimensionless units of Eq.~\eqref{redefinitions}.
Scaling parameter $\xi$ obtained with the $1024^3$ lattice in the case of vacuum initial conditions with the cutoff $k_{cut}=1$. One full simulation is analysed. We use dimensionless units of Eq.~\eqref{redefinitions}.
Histograms showing distribution of melting DWs by the area $S$ in the case of vacuum initial conditions with the cutoff $k_{cut}=1$. The height of each column corresponds to the total area of all DWs in the small range $(S, S+\Delta S)$, where $\Delta S$ is the width of a column. Only one simulation with the $1024^3$ lattice has been been performed for this plots. Dimensionless units of Eq.~\eqref{redefinitions} are used.
Histograms showing distribution of melting DWs by the area $S$ in the case of vacuum initial conditions with the cutoff $k_{cut}=1$. The height of each column corresponds to the total area of all DWs in the small range $(S, S+\Delta S)$, where $\Delta S$ is the width of a column. Only one simulation with the $1024^3$ lattice has been been performed for this plots. Dimensionless units of Eq.~\eqref{redefinitions} are used.
Histograms showing distribution of melting DWs by the area $S$ in the case of vacuum initial conditions with the cutoff $k_{cut}=1$. The height of each column corresponds to the total area of all DWs in the small range $(S, S+\Delta S)$, where $\Delta S$ is the width of a column. Only one simulation with the $1024^3$ lattice has been been performed for this plots. Dimensionless units of Eq.~\eqref{redefinitions} are used.
Histograms showing distribution of melting DWs by the area $S$ in the case of vacuum initial conditions with the cutoff $k_{cut}=1$. The height of each column corresponds to the total area of all DWs in the small range $(S, S+\Delta S)$, where $\Delta S$ is the width of a column. Only one simulation with the $1024^3$ lattice has been been performed for this plots. Dimensionless units of Eq.~\eqref{redefinitions} are used.
The same as in Fig.~\ref{Histograms}, but assuming thermal initial conditions (with no cutoff).
The same as in Fig.~\ref{Histograms}, but assuming thermal initial conditions (with no cutoff).
The same as in Fig.~\ref{Histograms}, but assuming thermal initial conditions (with no cutoff).
The same as in Fig.~\ref{Histograms}, but assuming thermal initial conditions (with no cutoff).
Left panel. Scaling parameter $\xi$ obtained with $512^3$ lattice in the case of vacuum initial conditions with the cutoff $k_{cut}=1$ (top), $k_{cut}=6$ (middle), and with no cutoff (bottom). Right panel. Same but assuming thermal initial conditions with the cutoff $k_{cut}=0.3$ (top), $k_{cut}=1$ (middle), and with no cutoff (bottom). One simulation has been performed for each plot. We adopt dimensionless units defined in Eq.~\eqref{redefinitions}.
Evolution of the scaling parameter $\xi$ is shown separately for a long wall (black dots) and closed walls (blue dots) in the case of thermal initial conditions (with no cutoff). Simulations are performed on $1024^3$ lattice. Dimensionless units of Eq.~\eqref{redefinitions} have been used.
Spectrum of GWs produced by the network of melting DWs in the case of vacuum initial conditions with the cutoff $k_{cut}=1$ in dimensionless units defined in Eq.~\eqref{redefinitions}. One simulation is performed on $2048^3$ lattice. Brighter colors correspond to the spectrum at later times. The initial and final conformal times of the simulation are set at $\tau_i=1$ and $\tau = 405$ (shown with the yellow line), respectively. Straight lines demonstrate slopes of GW spectrum in its close-to-maximum infrared and ultraviolet parts at $\tau=405$; corresponding spectral indices are also shown. We have set $\alpha=1$, $\lambda_{\chi}=0.03$, $g_* (T_{sc})=100$, and $T_i \approx 1.3 \cdot 10^{17}~\mbox{GeV}$, when performing simulations. For arbitrary $\alpha$, $\lambda_{\chi}$, $g_* (T_{sc})$, and $T_i$, one should multiply values on the plot by $\alpha^6 \cdot (\lambda_{\chi}/0.03) \cdot (T_i/1.3 \cdot 10^{17}~\mbox{GeV})^2 \cdot (100/g_*(T_{sc}))$, see Eq.~\eqref{peaknumerics}.
The same as in Fig.~\ref{spectrum_vacuum}, but in the case of thermal initial conditions (with no cutoff).
Comparison of GW spectra obtained assuming thermal initial conditions with $2048^3$ and $1024^3$ lattices in the case of equal lattice spacing (left) and different lattice spacings (right). Dimensionless units of Eq.~\eqref{redefinitions} have been used.
Comparison of GW spectra obtained assuming thermal initial conditions with $2048^3$ and $1024^3$ lattices in the case of equal lattice spacing (left) and different lattice spacings (right). Dimensionless units of Eq.~\eqref{redefinitions} have been used.
References
- [1] Y. B. Zeldovich, I. Y. Kobzarev and L. B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974), 3-11 SLAC-TRANS0165.
- [2] T. W. B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976), 1387-1398.
- [3] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press, 2000, ISBN 978-0-521-65476-0.
- [4] C. Caprini and D. G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35 (2018) no.16, 163001; [arXiv:1801.04268 [astro-ph.CO]].
- [4] C. Caprini and D. G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35 (2018) no.16, 163001; [arXiv:1801.04268 [astro-ph.CO]].
- [5] T. Hiramatsu, M. Kawasaki and K. Saikawa, On the estimation of gravitational wave spectrum from cosmic domain walls, JCAP 02 (2014), 031; [arXiv:1309.5001 [astro-ph.CO]].
- [5] T. Hiramatsu, M. Kawasaki and K. Saikawa, On the estimation of gravitational wave spectrum from cosmic domain walls, JCAP 02 (2014), 031; [arXiv:1309.5001 [astro-ph.CO]].
- [6] G. Agazie et al. [NANOGrav], The NANOGrav 15 yr Data Set: Evidence for a Gravitationalwave Background, Astrophys. J. Lett. 951 (2023) no.1, L8; [arXiv:2306.16213 [astro-ph.HE]].
- [6] G. Agazie et al. [NANOGrav], The NANOGrav 15 yr Data Set: Evidence for a Gravitationalwave Background, Astrophys. J. Lett. 951 (2023) no.1, L8; [arXiv:2306.16213 [astro-ph.HE]].
- [7] G. Agazie et al. [NANOGrav], The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background, Astrophys. J. Lett. 952 (2023) no.2, L37; [arXiv:2306.16220 [astro-ph.HE]].
- [7] G. Agazie et al. [NANOGrav], The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background, Astrophys. J. Lett. 952 (2023) no.2, L37; [arXiv:2306.16220 [astro-ph.HE]].
- [8] J. Antoniadis et al. [EPTA and InPTA], The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023), A50; [arXiv:2306.16214 [astro-ph.HE]].
- [8] J. Antoniadis et al. [EPTA and InPTA], The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023), A50; [arXiv:2306.16214 [astro-ph.HE]].
- [9] J. Antoniadis et al. [EPTA and InPTA], The second data release from the European Pulsar Timing Array - IV. Implications for massive black holes, dark matter, and the early Universe, Astron. Astrophys. 685 (2024), A94; [arXiv:2306.16227 [astro-ph.CO]].
- [9] J. Antoniadis et al. [EPTA and InPTA], The second data release from the European Pulsar Timing Array - IV. Implications for massive black holes, dark matter, and the early Universe, Astron. Astrophys. 685 (2024), A94; [arXiv:2306.16227 [astro-ph.CO]].
- [10] D. J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951 (2023) no.1, L6; [arXiv:2306.16215 [astroph.HE]].
- [10] D. J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951 (2023) no.1, L6; [arXiv:2306.16215 [astroph.HE]].
- [11] H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) no.7, 075024; [arXiv:2306.16216 [astro-ph.HE]].
- [11] H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) no.7, 075024; [arXiv:2306.16216 [astro-ph.HE]].
- [12] G. Agazie et al. [International Pulsar Timing Array], Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background, Astrophys. J. 966 (2024) no.1, 105; [arXiv:2309.00693 [astro-ph.HE]].
- [12] G. Agazie et al. [International Pulsar Timing Array], Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background, Astrophys. J. 966 (2024) no.1, 105; [arXiv:2309.00693 [astro-ph.HE]].
- [13] A. Afzal et al. [NANOGrav], The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023) no.1, L11 [erratum: Astrophys. J. Lett. 971 (2024) no.1, L27; erratum: Astrophys. J. 971 (2024) no.1, L27]; [arXiv:2306.16219 [astro-ph.HE]].
- [13] A. Afzal et al. [NANOGrav], The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023) no.1, L11 [erratum: Astrophys. J. Lett. 971 (2024) no.1, L27; erratum: Astrophys. J. 971 (2024) no.1, L27]; [arXiv:2306.16219 [astro-ph.HE]].
- [13] A. Afzal et al. [NANOGrav], The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023) no.1, L11 [erratum: Astrophys. J. Lett. 971 (2024) no.1, L27; erratum: Astrophys. J. 971 (2024) no.1, L27]; [arXiv:2306.16219 [astro-ph.HE]].
- [13] A. Afzal et al. [NANOGrav], The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023) no.1, L11 [erratum: Astrophys. J. Lett. 971 (2024) no.1, L27; erratum: Astrophys. J. 971 (2024) no.1, L27]; [arXiv:2306.16219 [astro-ph.HE]].
- [14] E. Babichev, D. Gorbunov, S. Ramazanov, R. Samanta and A. Vikman, NANOGrav spectral index γ=3 from melting domain walls, Phys. Rev. D 108 (2023) no.12, 123529; [arXiv:2307.04582 [hep-ph]].
- [14] E. Babichev, D. Gorbunov, S. Ramazanov, R. Samanta and A. Vikman, NANOGrav spectral index γ=3 from melting domain walls, Phys. Rev. D 108 (2023) no.12, 123529; [arXiv:2307.04582 [hep-ph]].
- [15] A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D 23 (1981), 852-857.
- [16] S. Ramazanov, E. Babichev, D. Gorbunov and A. Vikman, Beyond freeze-in: Dark matter via inverse phase transition and gravitational wave signal, Phys. Rev. D 105 (2022) no.6, 063530; [arXiv:2104.13722 [hep-ph]].
- [16] S. Ramazanov, E. Babichev, D. Gorbunov and A. Vikman, Beyond freeze-in: Dark matter via inverse phase transition and gravitational wave signal, Phys. Rev. D 105 (2022) no.6, 063530; [arXiv:2104.13722 [hep-ph]].
- [17] E. Babichev, D. Gorbunov, S. Ramazanov and A. Vikman, Gravitational shine of dark domain walls, JCAP 04 (2022) no.04, 028; [arXiv:2112.12608 [hep-ph]].
- [17] E. Babichev, D. Gorbunov, S. Ramazanov and A. Vikman, Gravitational shine of dark domain walls, JCAP 04 (2022) no.04, 028; [arXiv:2112.12608 [hep-ph]].
- [18] D. G. Figueroa, A. Florio, F. Torrenti and W. Valkenburg, The art of simulating the early Universe – Part I, JCAP 04 (2021), 035; [arXiv:2006.15122 [astro-ph.CO]].
- [18] D. G. Figueroa, A. Florio, F. Torrenti and W. Valkenburg, The art of simulating the early Universe – Part I, JCAP 04 (2021), 035; [arXiv:2006.15122 [astro-ph.CO]].
- [19] D. G. Figueroa, A. Florio, F. Torrenti and W. Valkenburg, CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe, Comput. Phys. Commun. 283 (2023), 108586; [arXiv:2102.01031 [astro-ph.CO]].
- [19] D. G. Figueroa, A. Florio, F. Torrenti and W. Valkenburg, CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe, Comput. Phys. Commun. 283 (2023), 108586; [arXiv:2102.01031 [astro-ph.CO]].
- [20] D. G. Figueroa, A. Florio and F. Torrenti, Present and future of CosmoLattice; [arXiv:2312.15056 [astro-ph.CO]].
- [20] D. G. Figueroa, A. Florio and F. Torrenti, Present and future of CosmoLattice; [arXiv:2312.15056 [astro-ph.CO]].
- [21] G. B. Gelmini, M. Gleiser and E. W. Kolb, Cosmology of Biased Discrete Symmetry Breaking, Phys. Rev. D 39 (1989), 1558.
- [22] T. W. B. Kibble, G. Lazarides and Q. Shafi, Walls Bounded by Strings, Phys. Rev. D 26 (1982), 435.
- [23] D. Coulson, Z. Lalak and B. A. Ovrut, Biased domain walls, Phys. Rev. D 53 (1996), 42374246.
- [24] S. E. Larsson, S. Sarkar and P. L. White, Evading the cosmological domain wall problem, Phys. Rev. D 55 (1997), 5129-5135; [arXiv:hep-ph/9608319 [hep-ph]].
- [24] S. E. Larsson, S. Sarkar and P. L. White, Evading the cosmological domain wall problem, Phys. Rev. D 55 (1997), 5129-5135; [arXiv:hep-ph/9608319 [hep-ph]].
- [25] S. Blasi, R. Jinno, T. Konstandin, H. Rubira and I. Stomberg, Gravitational waves from defect-driven phase transitions: domain walls, JCAP 10 (2023), 051; [arXiv:2302.06952 [astroph.CO]].
- [25] S. Blasi, R. Jinno, T. Konstandin, H. Rubira and I. Stomberg, Gravitational waves from defect-driven phase transitions: domain walls, JCAP 10 (2023), 051; [arXiv:2302.06952 [astroph.CO]].
- [26] S. Weinberg, Gauge and Global Symmetries at High Temperature, Phys. Rev. D 9 (1974), 3357-3378.
- [27] I. Dankovsky, E. Babichev, D. Gorbunov, S. Ramazanov and A. Vikman, Revisiting evolution of domain walls and their gravitational radiation with CosmoLattice, JCAP 09 (2024), 047; [arXiv:2406.17053 [astro-ph.CO]].
- [27] I. Dankovsky, E. Babichev, D. Gorbunov, S. Ramazanov and A. Vikman, Revisiting evolution of domain walls and their gravitational radiation with CosmoLattice, JCAP 09 (2024), 047; [arXiv:2406.17053 [astro-ph.CO]].
- [28] N. Kitajima, J. Lee, K. Murai, F. Takahashi and W. Yin, Gravitational waves from domain wall collapse, and application to nanohertz signals with QCD-coupled axions, Phys. Lett. B 851 (2024), 138586; [arXiv:2306.17146 [hep-ph]].
- [28] N. Kitajima, J. Lee, K. Murai, F. Takahashi and W. Yin, Gravitational waves from domain wall collapse, and application to nanohertz signals with QCD-coupled axions, Phys. Lett. B 851 (2024), 138586; [arXiv:2306.17146 [hep-ph]].
- [29] R. Z. Ferreira, S. Gasparotto, T. Hiramatsu, I. Obata and O. Pujolas, Axionic defects in the CMB: birefringence and gravitational waves, JCAP 05 (2024), 066; [arXiv:2312.14104 [hepph]].
- [29] R. Z. Ferreira, S. Gasparotto, T. Hiramatsu, I. Obata and O. Pujolas, Axionic defects in the CMB: birefringence and gravitational waves, JCAP 05 (2024), 066; [arXiv:2312.14104 [hepph]].
- [30] N. Kitajima, J. Lee, F. Takahashi and W. Yin, Stability of domain walls with inflationary fluctuations under potential bias, and gravitational wave signatures; [arXiv:2311.14590 [hepph]].
- [30] N. Kitajima, J. Lee, F. Takahashi and W. Yin, Stability of domain walls with inflationary fluctuations under potential bias, and gravitational wave signatures; [arXiv:2311.14590 [hepph]].
- [31] W. T. Emond, S. Ramazanov and R. Samanta, Gravitational waves from melting cosmic strings, JCAP 01 (2022) no.01, 057; [arXiv:2108.05377 [hep-ph]].
- [31] W. T. Emond, S. Ramazanov and R. Samanta, Gravitational waves from melting cosmic strings, JCAP 01 (2022) no.01, 057; [arXiv:2108.05377 [hep-ph]].
- [32] W. H. Press, B. S. Ryden and D. N. Spergel, Dynamical Evolution of Domain Walls in an Expanding Universe, Astrophys. J. 347 (1989), 590-604.
- [33] T. Garagounis and M. Hindmarsh, Scaling in numerical simulations of domain walls, Phys. Rev. D 68 (2003), 103506; [arXiv:hep-ph/0212359 [hep-ph]].
- [33] T. Garagounis and M. Hindmarsh, Scaling in numerical simulations of domain walls, Phys. Rev. D 68 (2003), 103506; [arXiv:hep-ph/0212359 [hep-ph]].
- [34] S. Ramazanov, Spectrum of gravitational waves from long-lasting primordial sources, JCAP 02 (2024), 027; [arXiv:2310.19148 [gr-qc]].
- [34] S. Ramazanov, Spectrum of gravitational waves from long-lasting primordial sources, JCAP 02 (2024), 027; [arXiv:2310.19148 [gr-qc]].
- [35] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments, Oxford University Press, 2007, ISBN 978-0-19-171766-6, 978-0-19-852074-0.
- [36] C. Caprini, R. Durrer, T. Konstandin and G. Servant, General Properties of the Gravitational Wave Spectrum from Phase Transitions, Phys. Rev. D 79 (2009), 083519; [arXiv:0901.1661 [astro-ph.CO]].
- [36] C. Caprini, R. Durrer, T. Konstandin and G. Servant, General Properties of the Gravitational Wave Spectrum from Phase Transitions, Phys. Rev. D 79 (2009), 083519; [arXiv:0901.1661 [astro-ph.CO]].
- [37] A. Hook, G. Marques-Tavares and D. Racco, Causal gravitational waves as a probe of free streaming particles and the expansion of the Universe, JHEP 02 (2021), 117; [arXiv:2010.03568 [hep-ph]].
- [37] A. Hook, G. Marques-Tavares and D. Racco, Causal gravitational waves as a probe of free streaming particles and the expansion of the Universe, JHEP 02 (2021), 117; [arXiv:2010.03568 [hep-ph]].
- [38] R. G. Cai, S. Pi and M. Sasaki, Universal infrared scaling of gravitational wave background spectra, Phys. Rev. D 102 (2020) no.8, 083528; [arXiv:1909.13728 [astro-ph.CO]].
- [38] R. G. Cai, S. Pi and M. Sasaki, Universal infrared scaling of gravitational wave background spectra, Phys. Rev. D 102 (2020) no.8, 083528; [arXiv:1909.13728 [astro-ph.CO]].
- [39] G. Agazie et al., The NANOGrav 15 yr Data Set: Running of the Spectral Index; [arXiv:2408.10166 [astro-ph.HE]].
- [39] G. Agazie et al., The NANOGrav 15 yr Data Set: Running of the Spectral Index; [arXiv:2408.10166 [astro-ph.HE]].
- [40] N. Aghanim et al. [Planck], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020), A6 [erratum: Astron. Astrophys. 652 (2021), C4]; [arXiv:1807.06209 [astro-ph.CO]].
- [40] N. Aghanim et al. [Planck], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020), A6 [erratum: Astron. Astrophys. 652 (2021), C4]; [arXiv:1807.06209 [astro-ph.CO]].
- [40] N. Aghanim et al. [Planck], Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020), A6 [erratum: Astron. Astrophys. 652 (2021), C4]; [arXiv:1807.06209 [astro-ph.CO]].
- [41] S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004), 043506; [arXiv:astro-ph/0403291 [astro-ph]].
- [41] S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004), 043506; [arXiv:astro-ph/0403291 [astro-ph]].
- [42] M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) no.6, 065014; [arXiv:1412.0789 [hep-ph]].
- [42] M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) no.6, 065014; [arXiv:1412.0789 [hep-ph]].
- [43] E. Babichev, D. Gorbunov and S. Ramazanov, Gravitational misalignment mechanism of Dark Matter production, JCAP 08 (2020), 047; [arXiv:2004.03410 [hep-ph]].
- [43] E. Babichev, D. Gorbunov and S. Ramazanov, Gravitational misalignment mechanism of Dark Matter production, JCAP 08 (2020), 047; [arXiv:2004.03410 [hep-ph]].
- [44] S. Ramazanov, F. R. Urban and A. Vikman, Observing primordial magnetic fields through Dark Matter, JCAP 02 (2021), 011; [arXiv:2010.03383 [astro-ph.CO]].
- [44] S. Ramazanov, F. R. Urban and A. Vikman, Observing primordial magnetic fields through Dark Matter, JCAP 02 (2021), 011; [arXiv:2010.03383 [astro-ph.CO]].
- [45] Y. B. Zel’dovich, Generation of waves by a rotating body, Pis’ma Zh. Eksp. Teor. Fiz.14 (1971); [270 JETP Lett. 14, 180 (1971)].
- [45] Y. B. Zel’dovich, Generation of waves by a rotating body, Pis’ma Zh. Eksp. Teor. Fiz.14 (1971); [270 JETP Lett. 14, 180 (1971)].
- [46] Y. B. Zel’dovich, Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body, Zh. Eksp. Teor. Fiz 62 (1972) 2076; [Sov.Phys. JETP 35, 1085 (1972)].
- [46] Y. B. Zel’dovich, Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body, Zh. Eksp. Teor. Fiz 62 (1972) 2076; [Sov.Phys. JETP 35, 1085 (1972)].
- [47] A. A. Starobinsky, Amplification of waves reflected from a rotating ”black hole”, Sov. Phys. JETP 37 (1973) no.1, 28-32.
- [48] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010), 123530; [arXiv:0905.4720 [hep-th]].
- [48] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010), 123530; [arXiv:0905.4720 [hep-th]].
- [49] P. Amaro-Seoane et al. [LISA], Laser Interferometer Space Antenna; [arXiv:1702.00786 [astroph.IM]].
- [49] P. Amaro-Seoane et al. [LISA], Laser Interferometer Space Antenna; [arXiv:1702.00786 [astroph.IM]].
- [50] J. Luo et al. [TianQin], TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) no.3, 035010; [arXiv:1512.02076 [astro-ph.IM]].
- [50] J. Luo et al. [TianQin], TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33 (2016) no.3, 035010; [arXiv:1512.02076 [astro-ph.IM]].
- [51] S. Hild et al, Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28 (2011), 094013; [arXiv:1012.0908 [gr-qc]].
- [51] S. Hild et al, Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28 (2011), 094013; [arXiv:1012.0908 [gr-qc]].
- [52] A. Vilenkin, Cosmological evolution of monopoles connected by strings, Nucl. Phys. B 196 (1982), 240-258.
- [53] J. Preskill and A. Vilenkin, Decay of metastable topological defects, Phys. Rev. D 47 (1993), 2324-2342; [arXiv:hep-ph/9209210 [hep-ph]].
- [53] J. Preskill and A. Vilenkin, Decay of metastable topological defects, Phys. Rev. D 47 (1993), 2324-2342; [arXiv:hep-ph/9209210 [hep-ph]].
- [54] A. Monin and M. B. Voloshin, The Spontaneous breaking of a metastable string, Phys. Rev. D 78 (2008), 065048; [arXiv:0808.1693 [hep-th]].
- [54] A. Monin and M. B. Voloshin, The Spontaneous breaking of a metastable string, Phys. Rev. D 78 (2008), 065048; [arXiv:0808.1693 [hep-th]].
- [55] W. Buchmuller, V. Domcke and K. Schmitz, Metastable cosmic strings, JCAP 11 (2023), 020; [arXiv:2307.04691 [hep-ph]].
- [55] W. Buchmuller, V. Domcke and K. Schmitz, Metastable cosmic strings, JCAP 11 (2023), 020; [arXiv:2307.04691 [hep-ph]].