Radiative symmetry breaking from the on-shell perspective

Author(s)

Sojka, Bartosz, Swiezewska, Bogumila

Abstract

Models with classical scale symmetry, which feature radiative symmetry breaking, generically lead to a supercooled first-order phase transition in the early Universe resulting in a strong gravitational-wave signal, potentially observable by LISA. This is thanks to the absence of mass terms in the potential and the resulting logarithmic structure of the zero-temperature effective potential. It is known that imposing a symmetry at classical level does not prohibit breaking it by quantum corrections. In the case of scale symmetry, a mass term can in principle appear through renormalisation. This is not the case in the commonly used $\overline{\mathrm{MS}}$ or Coleman-Weinberg schemes. In this work, we renormalise a scale-invariant model in the on-shell scheme to check whether parameterising it with the physical masses will introduce mass terms to the potential. We find that indeed mass terms appear for an arbitrary choice of the physical masses. However, we formulate an on-shell condition for radiative symmetry breaking, sufficient and necessary for the cancellation of mass terms in the renormalised potential, yielding a logarithmic potential needed for supercooled phase transitions.

Figures

Left panel: the rescaled potential of eq.~\eqref{eq:rescaled-potential} for $r/\rcw=0.75$ (long-dashed, green), $r/\rcw=1$ (solid, blue), $r/\rcw=1.25$ (short-dashed, red). Right panel: the ratio of the running mass to the physical one for the vector (solid line) and the scalar (dashed line).

Left panel: the rescaled potential of eq.~\eqref{eq:rescaled-potential} for $r/\rcw=0.75$ (long-dashed, green), $r/\rcw=1$ (solid, blue), $r/\rcw=1.25$ (short-dashed, red). Right panel: the ratio of the running mass to the physical one for the vector (solid line) and the scalar (dashed line).


Left panel: the rescaled potential of eq.~\eqref{eq:rescaled-potential} for $r/\rcw=0.75$ (long-dashed, green), $r/\rcw=1$ (solid, blue), $r/\rcw=1.25$ (short-dashed, red). Right panel: the ratio of the running mass to the physical one for the vector (solid line) and the scalar (dashed line).

Left panel: the rescaled potential of eq.~\eqref{eq:rescaled-potential} for $r/\rcw=0.75$ (long-dashed, green), $r/\rcw=1$ (solid, blue), $r/\rcw=1.25$ (short-dashed, red). Right panel: the ratio of the running mass to the physical one for the vector (solid line) and the scalar (dashed line).


References
  • [1] LISA Cosmology Working Group collaboration, P. Auclair et al., Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel. 26 (2023) 5, [2204.05434].
  • [2] C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001, [1512.06239].
  • [3] C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024, [1910.13125].
  • [4] K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Is there a hot electroweak phase transition at mH ≳ mW ?, Phys. Rev. Lett. 77 (1996) 2887–2890, [hep-ph/9605288].
  • [5] M. Gurtler, E.-M. Ilgenfritz and A. Schiller, Where the electroweak phase transition ends, Phys. Rev. D 56 (1997) 3888–3895, [hep-lat/9704013].
  • [6] F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21–24, [hep-ph/9809291].
  • [7] L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054, [hep-ph/0607158].
  • [8] T. Konstandin, G. Nardini and M. Quiros, Gravitational Backreaction Effects on the Holographic Phase Transition, Phys. Rev. D82 (2010) 083513, [1007.1468].
  • [9] T. Konstandin and G. Servant, Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale, JCAP 1112 (2011) 009, [1104.4791].
  • [10] T. Hambye and A. Strumia, Dynamical generation of the weak and Dark Matter scale, Phys. Rev. D88 (2013) 055022, [1306.2329].
  • [11] J. Jaeckel, V. V. Khoze and M. Spannowsky, Hearing the signal of dark sectors with gravitational wave detectors, Phys. Rev. D94 (2016) 103519, [1602.03901].
  • [12] R. Jinno and M. Takimoto, Probing a classically conformal B-L model with gravitational waves, Phys. Rev. D95 (2017) 015020, [1604.05035].
  • [13] L. Marzola, A. Racioppi and V. Vaskonen, Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model, Eur. Phys. J. C77 (2017) 484, [1704.01034].
  • [14] K. Hashino, M. Kakizaki, S. Kanemura, P. Ko and T. Matsui, Gravitational waves from first order electroweak phase transition in models with the U(1)X gauge symmetry, JHEP 06 (2018) 088, [1802.02947]. 2Of course, in more complicated models the criterion of the scalar-to-vector mass ratio has to be substituted with an adequate analogue.
  • [15] I. Baldes and C. Garcia-Cely, Strong gravitational radiation from a simple dark matter model, JHEP 05 (2019) 190, [1809.01198].
  • [16] T. Prokopec, J. Rezacek and B. Świeżewska, Gravitational waves from conformal symmetry breaking, JCAP 02 (2019) 009, [1809.11129].
  • [17] C. Marzo, L. Marzola and V. Vaskonen, Phase transition and vacuum stability in the classically conformal B–L model, Eur. Phys. J. C 79 (2019) 601, [1811.11169].
  • [18] A. Mohamadnejad, Gravitational waves from scale-invariant vector dark matter model: Probing below the neutrino-floor, Eur. Phys. J. C 80 (2020) 197, [1907.08899].
  • [19] Z. Kang and J. Zhu, Scale-genesis by Dark Matter and Its Gravitational Wave Signal, Phys. Rev. D 102 (2020) 053011, [2003.02465].
  • [20] J. Ellis, M. Lewicki and V. Vaskonen, Updated predictions for gravitational waves produced in a strongly supercooled phase transition, JCAP 11 (2020) 020, [2007.15586].
  • [21] A. Mohamadnejad, Electroweak phase transition and gravitational waves in a two-component dark matter model, JHEP 03 (2022) 188, [2111.04342].
  • [22] A. Dasgupta, P. S. B. Dev, A. Ghoshal and A. Mazumdar, Gravitational wave pathway to testable leptogenesis, Phys. Rev. D 106 (2022) 075027, [2206.07032].
  • [23] M. Kierkla, A. Karam and B. Świeżewska, Conformal model for gravitational waves and dark matter: a status update, JHEP 03 (2023) 007, [2210.07075].
  • [24] M. T. Frandsen, M. Heikinheimo, M. E. Thing, K. Tuominen and M. Rosenlyst, Vector dark matter in supercooled Higgs portal models, Phys. Rev. D 108 (2023) 015033, [2301.00041].
  • [25] M. Kierkla, B. Świeżewska, T. V. I. Tenkanen and J. van de Vis, Gravitational waves from supercooled phase transitions: dimensional transmutation meets dimensional reduction, JHEP 02 (2024) 234, [2312.12413].
  • [26] W. Ratzinger and P. Schwaller, Whispers from the dark side: Confronting light new physics with NANOGrav data, SciPost Phys. 10 (2021) 047, [2009.11875].
  • [27] NANOGrav collaboration, Z. Arzoumanian et al., Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset, Phys. Rev. Lett. 127 (2021) 251302, [2104.13930].
  • [28] Y. Gouttenoire, First-Order Phase Transition Interpretation of Pulsar Timing Array Signal Is Consistent with Solar-Mass Black Holes, Phys. Rev. Lett. 131 (2023) 171404, [2307.04239].
  • [29] E. Madge, E. Morgante, C. Puchades-Ibáñez, N. Ramberg, W. Ratzinger, S. Schenk et al., Primordial gravitational waves in the nano-Hertz regime and PTA data — towards solving the GW inverse problem, JHEP 10 (2023) 171, [2306.14856].
  • [30] D. G. Figueroa, M. Pieroni, A. Ricciardone and P. Simakachorn, Cosmological Background Interpretation of Pulsar Timing Array Data, Phys. Rev. Lett. 132 (2024) 171002, [2307.02399].
  • [31] J. Ellis, M. Fairbairn, G. Franciolini, G. Hütsi, A. Iovino, M. Lewicki et al., What is the source of the PTA GW signal?, Phys. Rev. D 109 (2024) 023522, [2308.08546].
  • [32] NANOGrav collaboration, G. Agazie et al., The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8, [2306.16213].
  • [33] EPTA, InPTA: collaboration, J. Antoniadis et al., The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50, [2306.16214].
  • [34] D. J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6, [2306.16215].
  • [35] Y. Bai and M. Korwar, Cosmological constraints on first-order phase transitions, Phys. Rev. D 105 (2022) 095015, [2109.14765].
  • [36] T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053, [2306.09411].
  • [37] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888–1910.
  • [38] A. Andreassen, W. Frost and M. D. Schwartz, Consistent Use of Effective Potentials, Phys. Rev. D 91 (2015) 016009, [1408.0287].
  • [39] J. R. Espinosa, M. Garny and T. Konstandin, Interplay of Infrared Divergences and Gauge-Dependence of the Effective Potential, Phys. Rev. D 94 (2016) 055026, [1607.08432].
  • [40] W. A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on Particle Physics Ontake Mountain, Japan, August 27-September 2, 1995, 1995.
  • [41] N. Levi, T. Opferkuch and D. Redigolo, The supercooling window at weak and strong coupling, JHEP 02 (2023) 125, [2212.08085].