Non-decoupling scalars at future colliders

Author(s)

Crawford, Graeme, Sutherland, Dave

Abstract

We consider a class of BSM models where a generic scalar electroweak multiplet obtains a significant fraction of its mass from a coupling to the Higgs. Such models are non-decoupling: their new states are necessarily at the TeV scale or below, they can significantly alter the electroweak phase transition, and they have a pattern of low energy effects that are distinct from those predicted by SMEFT. Using their minimal gauge and Higgs couplings, we show that a future precision lepton collider (such as FCC-ee, CEPC, ILC, or CLIC) can probe all the non-decoupling parameter space of scalar electroweak multiplets, providing fundamental information on the mechanism of electroweak symmetry breaking.

References
  • [1] ATLAS collaboration, A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery, Nature 607 (2022) 52 [2207.00092].
  • [2] CMS collaboration, A portrait of the Higgs boson by the CMS experiment ten years after the discovery., Nature 607 (2022) 60 [2207.00043].
  • [3] A. Abada and others, FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474.
  • [4] M. Colpi et al., LISA Definition Study Report, 2402.07571.
  • [5] R. Caldwell et al., Detection of early-universe gravitational-wave signatures and fundamental physics, Gen. Rel. Grav. 54 (2022) 156 [2203.07972].
  • [6] P. Asadi et al., Early-Universe Model Building, 2203.06680.
  • [7] T. Cohen, N. Craig, X. Lu and D. Sutherland, Is SMEFT Enough?, JHEP 03 (2021) 237 [2008.08597].
  • [8] I. Banta, T. Cohen, N. Craig, X. Lu and D. Sutherland, Non-decoupling new particles, JHEP 02 (2022) 029.
  • [9] A. Djouadi and A. Lenz, Sealing the fate of a fourth generation of fermions, Phys. Lett. B 715 (2012) 310 [1204.1252].
  • [10] E. Kuflik, Y. Nir and T. Volansky, Implications of Higgs searches on the four generation standard model, Phys. Rev. Lett. 110 (2013) 091801 [1204.1975].
  • [11] S.S. AbdusSalam and T.A. Chowdhury, Scalar Representations in the Light of Electroweak Phase Transition and Cold Dark Matter Phenomenology, JCAP 05 (2014) 026 [1310.8152].
  • [12] A. Katz and M. Perelstein, Higgs Couplings and Electroweak Phase Transition, JHEP 07 (2014) 108 [1401.1827].
  • [13] ATLAS collaboration, Search for heavy long-lived multicharged particles in proton-proton collisions at √ s = 13 TeV using the ATLAS detector, Phys. Rev. D 99 (2019) 052003 [1812.03673].
  • [14] CMS collaboration, Search for long-lived charged particles in proton-proton collisions at √ s = 13 TeV, Phys. Rev. D 94 (2016) 112004 [1609.08382].
  • [15] A. Crivellin, F. Kirk, C.A. Manzari and L. Panizzi, Searching for lepton flavor universality violation and collider signals from a singly charged scalar singlet, Phys. Rev. D 103 (2021) 073002 [2012.09845].
  • [16] D. Dercks and T. Robens, Constraining the Inert Doublet Model using Vector Boson Fusion, Eur. Phys. J. C 79 (2019) 924 [1812.07913].
  • [17] N.F. Bell, M.J. Dolan, L.S. Friedrich, M.J. Ramsey-Musolf and R.R. Volkas, Two-Step Electroweak Symmetry-Breaking: Theory Meets Experiment, JHEP 05 (2020) 050 [2001.05335].
  • [18] M. Carena, Z. Liu and Y. Wang, Electroweak phase transition with spontaneous Z2-breaking, JHEP 08 (2020) 107 [1911.10206].
  • [19] N. Craig, H.K. Lou, M. McCullough and A. Thalapillil, The Higgs Portal Above Threshold, JHEP 02 (2016) 127 [1412.0258].
  • [20] S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [hep-ph/0504050].
  • [21] M.D. Goodsell and F. Staub, Unitarity constraints on general scalar couplings with SARAH, Eur. Phys. J. C 78 (2018) 649 [1805.07306].
  • [22] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127.
  • [23] L. Lavoura and L.-F. Li, Making the small oblique parameters large, Phys. Rev. D 49 (1994) 1409 [hep-ph/9309262].
  • [24] H.-H. Zhang, W.-B. Yan and X.-S. Li, The Oblique corrections from heavy scalars in irreducible representations, Mod. Phys. Lett. A 23 (2008) 637 [hep-ph/0612059].
  • [25] H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004.
  • [26] D. Egana-Ugrinovic and S. Thomas, Effective Theory of Higgs Sector Vacuum States, 1512.00144.
  • [27] J.R. Forshaw, D.A. Ross and B.E. White, Higgs mass bounds in a triplet model, JHEP 10 (2001) 007 [hep-ph/0107232].
  • [28] Y. Cheng, X.-G. He, F. Huang, J. Sun and Z.-P. Xing, Electroweak precision tests for triplet scalars, Nucl. Phys. B 989 (2023) 116118 [2208.06760].
  • [29] J. de Blas and others, Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139.
  • [30] D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196.
  • [31] C. Englert and M. McCullough, Modified Higgs Sectors and NLO Associated Production, JHEP 07 (2013) 168 [1303.1526].
  • [32] D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [1409.0005].
  • [33] P. Huang, A.J. Long and L.-T. Wang, Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves, Phys. Rev. D 94 (2016) 075008 [1608.06619].
  • [34] S. Boselli, C.M. Carloni Calame, G. Montagna, O. Nicrosini, F. Piccinini and A. Shivaji, Higgs decay into four charged leptons in the presence of dimension-six operators, JHEP 01 (2018) 096 [1703.06667].
  • [35] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36.
  • [36] M.E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B 287 (1987) 757.
  • [37] D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [1206.2942].
  • [38] A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.
  • [39] D. Croon, TASI lectures on Phase Transitions, Baryogenesis, and Gravitational Waves, PoS TASI2022 (2024) 003 [2307.00068].
  • [40] I. Banta, A strongly first-order electroweak phase transition from Loryons, JHEP 06 (2022) 099.
  • [41] A. Noble and M. Perelstein, Higgs self-coupling as a probe of electroweak phase transition, Phys. Rev. D 78 (2008) 063518 [0711.3018].
  • [42] S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888.
  • [43] M.E. Carrington, The Effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933.
  • [44] R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [hep-ph/9204216].
  • [45] C. Delaunay, C. Grojean and J.D. Wells, Dynamics of Non-renormalizable Electroweak Symmetry Breaking, JHEP 04 (2008) 029 [0711.2511].
  • [46] R. Alonso, J.C. Criado, R. Houtz and M. West, Walls, bubbles and doom — the cosmology of HEFT, JHEP 05 (2024) 049 [2312.00881].
  • [47] L.D. McLerran, M.E. Shaposhnikov, N. Turok and M.B. Voloshin, Why the baryon asymmetry of the universe is approximately 10**-10, Phys. Lett. B 256 (1991) 451.
  • [48] G.W. Anderson and L.J. Hall, The Electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685.
  • [49] M. Quiros, Finite temperature field theory and phase transitions, in ICTP Summer School in High-Energy Physics and Cosmology, pp. 187–259, 1, 1999 [hep-ph/9901312].
  • [50] C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [1109.4189].
  • [51] T. Cohen and A. Pierce, Electroweak Baryogenesis and Colored Scalars, Phys. Rev. D 85 (2012) 033006 [1110.0482].
  • [52] M. Laine and M. Meyer, Standard Model thermodynamics across the electroweak crossover, JCAP 07 (2015) 035 [1503.04935].
  • [53] D. Barducci, L. Di Luzio, M. Nardecchia and C. Toni, Closing in on new chiral leptons at the LHC, JHEP 12 (2023) 154 [2311.10130].
  • [54] M.B. Hindmarsh, M. Lüben, J. Lumma and M. Pauly, Phase transitions in the early universe, SciPost Phys. Lect. Notes 24 (2021) 1 [2008.09136].
  • [55] D. Curtin, P. Meade and H. Ramani, Thermal Resummation and Phase Transitions, Eur. Phys. J. C 78 (2018) 787 [1612.00466].
  • [56] J.R. Espinosa, M. Quiros and F. Zwirner, On the nature of the electroweak phase transition, Phys. Lett. B 314 (1993) 206 [hep-ph/9212248].
  • [57] K. Seller, Z. Szép and Z. Trócsanyi, Real effective potentials for phase transitions in models with extended scalar sectors, JHEP 04 (2023) 096 [2301.07961].
  • [58] A. Beniwal, M. Lewicki, J.D. Wells, M. White and A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [1702.06124].