Testing the Boundary-to-Bound Correspondence with Numerical Relativity

Author(s)

Kankani, Anuj, McWilliams, Sean T.

Abstract

The Boundary-to-Bound (B2B) correspondence, which connects orbital and radiative observables between bound and unbound orbits, has recently been introduced and demonstrated in the perturbative regime. We produce a large number of numerical relativity simulations of bound and unbound encounters between two nonspinning equal mass black holes in order to test this correspondence in the non-perturbative regime. We focus on testing the radiated energy and angular momentum, as well as orbital parameters such as the period and periastron advance. We find that, across a wide range of eccentricities, the B2B relationships do not hold in the non-perturbative regime, thereby placing a clear limit on the applicability of these relationships. We also approximate the separatrix between bound and unbound relativistic encounters as a function of their initial energies and angular momenta.

References
  • [1] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
  • [2] L. Blanchet, in Mass and Motion in General Relativity (Springer, 2010) pp. 125–166.
  • [3] G. Schäfer, in Mass and motion in General Relativity (Springer, 2010) pp. 167–210.
  • [4] S. Foffa and R. Sturani, Class. Quantum Grav. 31, 043001 (2014).
  • [5] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006 (1999).
  • [6] T. Damour and N. Deruelle, in Annales de l’IHP Physique théorique, Vol. 44 (1986) pp. 263–292.
  • [7] A. Buonanno and T. Damour, Phys. Rev. D 62 (2000).
  • [8] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74 (2006).
  • [9] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 62 (2000).
  • [10] T. Damour, Phys. Rev. D 64 (2001).
  • [11] A. Bohé, L. Shao, A. Taracchini, A. Buonanno, S. Babak, I. W. Harry, I. Hinder, S. Ossokine, M. Pürrer, V. Raymond, T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace, M. A. Scheel, and B. Szilágyi, Phys. Rev. D 95 (2017).
  • [12] S. Ossokine, A. Buonanno, S. Marsat, R. Cotesta, S. Babak, T. Dietrich, R. Haas, I. Hinder, H. P. Pfeiffer, M. Pürrer, C. J. Woodford, M. Boyle, L. E. Kidder, M. A. Scheel, and B. Szilágyi, Phys. Rev. D 102 (2020).
  • [13] R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder, and S. Ossokine, Phys. Rev. D 98 (2018).
  • [14] A. Ramos-Buades, A. Buonanno, H. Estellés, M. Khalil, D. P. Mihaylov, S. Ossokine, L. Pompili, and M. Shiferaw, Phys. Rev. D 108, 124037 (2023).
  • [15] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E. Barausse, P. Bender, E. Berti, P. Binetruy, M. Born, D. Bortoluzzi, et al., Laser interferometer space antenna (2017), arXiv:1702.00786 [astro-ph.IM].
  • [16] M. Colpi, K. Danzmann, M. Hewitson, K. HolleyBockelmann, P. Jetzer, G. Nelemans, A. Petiteau, D. Shoemaker, C. Sopuerta, R. Stebbins, et al., arXiv preprint arXiv:2402.07571 (2024).
  • [17] L. S. S. Team et al., LISA science requirements document, Tech. Rep. (Tech. Rep. ESA-L3-EST-SCI-RS-001, European Space Agency, 2018.[24] P. Amaro . . . , 2018).
  • [18] N. Afshordi, S. Akçay, P. A. Seoane, A. Antonelli, J. C. Aurrekoetxea, L. Barack, E. Barausse, R. Benkel, L. Bernard, S. Bernuzzi, et al., arXiv preprint arXiv:2311.01300 (2023).
  • [19] G. Morrás, J. Garcı́a-Bellido, and S. Nesseris, Physics of the Dark Universe 35, 100932 (2022).
  • [20] J. Garcı́a-Bellido, S. Jaraba, and S. Kuroyanagi, Physics of the Dark Universe 36, 101009 (2022).
  • [21] R. Gamba, M. Breschi, G. Carullo, S. Albanesi, P. Rettegno, S. Bernuzzi, and A. Nagar, Nature Astronomy 7, 11–17 (2022).
  • [22] P. Saini, Mon. Not. R. Astron. Soc. 528, 833–842 (2024).
  • [23] A. Sesana, Phys. Rev. Lett. 116 (2016).
  • [24] A. Klein, G. Pratten, R. Buscicchio, P. Schmidt, C. J. Moore, E. Finch, A. Bonino, L. M. Thomas, N. Williams, D. Gerosa, et al., arXiv preprint arXiv:2204.03423 (2022).
  • [25] P. Amaro-Seoane, J. Andrews, M. Arca Sedda, A. Askar, Q. Baghi, R. Balasov, I. Bartos, S. S. Bavera, J. Bellovary, C. P. Berry, et al., Living Rev. Relativity 26, 2 (2023).
  • [26] K. Westpfahl and M. Goller, Lett. Nuovo Cimento;(Italy) 26 (1979).
  • [26] K. Westpfahl and M. Goller, Lett. Nuovo Cimento;(Italy) 26 (1979).
  • [27] K. Westpfahl and H. Hoyler, Lettere al Nuovo Cimento 27, 581 (1980).
  • [28] T. Damour, Phys. Rev. D 94 (2016).
  • [29] T. Damour, Phys. Rev. D 97 (2018).
  • [30] A. Antonelli, A. Buonanno, J. Steinhoff, M. van de Meent, and J. Vines, Phys. Rev. D 99 (2019).
  • [31] M. Saketh, J. Vines, J. Steinhoff, and A. Buonanno, Physical Review Research 4, 013127 (2022).
  • [32] C. Cheung, I. Z. Rothstein, and M. P. Solon, Phys. Rev. Lett. 121 (2018).
  • [33] D. A. Kosower, B. Maybee, and D. O’Connell, J. High Energy Phys. 2019 (2).
  • [34] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, Phys. Rev. Lett. 126, 171601 (2021).
  • [35] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, Phys. Rev. Lett. 128 (2022).
  • [36] A. V. Manohar, A. K. Ridgway, and C.-H. Shen, Phys. Rev. Lett. 129 (2022).
  • [37] G. Kälin and R. A. Porto, J. High Energy Phys. 2020 (11).
  • [38] G. Kälin, Z. Liu, and R. A. Porto, Phys. Rev. Lett. 125 (2020).
  • [39] C. Dlapa, G. Kälin, Z. Liu, and R. A. Porto, Physics Letters B 831, 137203 (2022).
  • [40] C. Dlapa, G. Kälin, Z. Liu, and R. A. Porto, Phys. Rev. Lett. 128 (2022).
  • [41] G. Kälin, J. Neef, and R. A. Porto, J. High Energy Phys. 2023 (1).
  • [42] C. Dlapa, G. Kälin, Z. Liu, J. Neef, and R. A. Porto, Phys. Rev. Lett. 130 (2023).
  • [43] G. Mogull, J. Plefka, and J. Steinhoff, J. High Energy Phys. 2021 (2).
  • [44] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, Phys. Rev. Lett. 126 (2021).
  • [45] S. Mougiakakos, M. M. Riva, and F. Vernizzi, Phys. Rev. D 104 (2021).
  • [46] G. U. Jakobsen, G. Mogull, J. Plefka, and B. Sauer, J. High Energy Phys. 2022 (10), 1.
  • [47] P. E. Nelson, Z. B. Etienne, S. T. McWilliams, and V. Nguyen, Phys. Rev. D 100 (2019).
  • [48] S. Jaraba and J. Garcı́a-Bellido, Physics of the Dark Universe 34, 100882 (2021).
  • [49] T. Damour, F. Guercilena, I. Hinder, S. Hopper, A. Nagar, and L. Rezzolla, Phys. Rev. D 89 (2014).
  • [50] S. Hopper, A. Nagar, and P. Rettegno, Phys. Rev. D 107 (2023).
  • [51] T. Damour and P. Rettegno, Phys. Rev. D 107 (2023).
  • [52] P. Rettegno, G. Pratten, L. M. Thomas, P. Schmidt, and T. Damour, Phys. Rev. D 108, 124016 (2023).
  • [53] M. Khalil, A. Buonanno, J. Steinhoff, and J. Vines, Phys. Rev. D 106 (2022).
  • [54] G. Kälin and R. A. Porto, J. High Energy Phys. 2020 (1), 1.
  • [55] K. Gregor and R. A. Porto, J. High Energy Phys. 2020 (2).
  • [56] G. Cho, G. Kälin, and R. A. Porto, J. High Energy Phys. 2022 (4), 1.
  • [57] R. Haas, C.-H. Cheng, P. Diener, Z. Etienne, G. Ficarra, T. Ikeda, H. Kalyanaraman, N. Kuo, L. Leung, C. Tian, et al., Zenodo (2020).
  • [58] Z. B. Etienne, NRPyPN: Validated post-newtonian expressions for input into Wolfram Mathematica, SymPy, or highly optimized C codes (2020).
  • [59] J. Thornburg, Class. Quantum Grav. 21, 743 (2004), arXiv:gr-qc/0306056.
  • [60] E. Schnetter, S. H. Hawley, and I. Hawke, Class. Quantum Grav. 21, 1465 (2004), arXiv:gr-qc/0310042.
  • [61] M. Ansorg, B. Brügmann, and W. Tichy, Phys. Rev. D 70, 064011 (2004), arXiv:gr-qc/0404056.
  • [62] G. Bozzola, The Journal of Open Source Software 6, 3099 (2021), arXiv:2104.06376 [gr-qc].
  • [63] J. Healy and C. O. Lousto, Phys. Rev. D 105 (2022).
  • [64] H. Nakano, J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D 91 (2015).
  • [65] D. Johnson, B. Brockton, H. E.A, and R. Haas, Power, https://https://github.com/NCSAGravity/ Gravitational_Waveform_Extractor (2017).
  • [66] A. Bohé, S. Marsat, G. Faye, and L. Blanchet, Class. Quantum Grav. 30, 075017 (2013).
  • [67] A. Le Tiec, L. Blanchet, and B. F. Whiting, Phys. Rev. D 85 (2012).
  • [68] F. Pretorius and D. Khurana, Class. Quantum Grav. 24, S83–S108 (2007).
  • [69] U. Sperhake, E. Berti, V. Cardoso, and F. Pretorius, Phys. Rev. Lett. 111 (2013).
  • [70] U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, T. Hinderer, and N. Yunes, Phys. Rev. Lett. 103 (2009).
  • [71] G. Cho, S. Dandapat, and A. Gopakumar, Phys. Rev. D 105 (2022).
  • [72] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah, Phys. Rev. D 77 (2008).
  • [73] T. Damour, P. Jaranowski, and G. Schäfer, Phys. Rev. D 89 (2014).
  • [74] P. Jaranowski and G. Schäfer, Phys. Rev. D 92 (2015).
  • [75] L. Bernard, L. Blanchet, A. Bohé, G. Faye, and S. Marsat, Phys. Rev. D 96 (2017).
  • [76] T. Marchand, L. Bernard, L. Blanchet, and G. Faye, Phys. Rev. D 97 (2018).
  • [77] C. R. Galley, A. K. Leibovich, R. A. Porto, and A. Ross, Phys. Rev. D 93 (2016).
  • [78] R. A. Porto and I. Z. Rothstein, Phys. Rev. D 96 (2017).
  • [79] S. Foffa and R. Sturani, Phys. Rev. D 87 (2013).
  • [80] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, Phys. Rev. Lett. 128, 161103 (2022).
  • [81] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 104 (2021).
  • [82] D. Bini and T. Damour, Phys. Rev. D 86 (2012).
  • [83] D. Bini, T. Damour, and A. Geralico, Phys. Rev. D 107 (2023).
  • [84] C. Dlapa, G. Kälin, Z. Liu, and R. A. Porto, J. High Energy Phys. 2023 (8), 1. E J px py type ∆E ∆J rmin [M] χ [deg] χerror [deg] 1.08824 1.35 0.22387 0.02250 scattering 7.79017×10−2 4.53266×10−1 2.154 17.303 0.305 1.06236 1.25 0.18885 0.02083 scattering 5.68047×10−2 3.59609×10−1 2.382 9.574 0.362 1.05569 1.225 0.17884 0.02042 scattering 5.00994×10−2 3.28562×10−1 2.487 357.418 0.383 1.05898 1.245 0.18382 0.02083 scattering 4.48590×10−2 3.04176×10−1 2.677 303.843 0.375 1.03836 1.152 0.15000 0.01920 unknown 3.75180×10−2 2.67565×10−2 2.692 16.732 0.453 1.03237 1.125 0.13874 0.01875 unknown 3.37486×10−2 2.48708×10−1 2.762 1.04335 1.18 0.15879 0.01967 scattering 3.69437×10−2 2.63980×10−1 2.768 327.467 0.430 1.05248 1.225 0.17380 0.02042 scattering 3.95140×10−2