Memory burden effect mimics reheating signatures on SGWB from ultra-low mass PBH domination

Author(s)

Bhaumik, Nilanjandev, Haque, Md Riajul, Jain, Rajeev Kumar, Lewicki, Marek

Abstract

Ultra-low mass primordial black holes (PBH), briefly dominating the expansion of the universe, would leave detectable imprints in the secondary stochastic gravitational wave background (SGWB). Such a scenario leads to a characteristic doubly peaked spectrum of SGWB and strongly depends on the Hawking evaporation of such light PBHs. However, these observable signatures are significantly altered if the memory burden effect during the evaporation of PBHs is taken into account. We show that for the SGWB induced by PBH density fluctuations, the memory burden effects on the Hawking evaporation of ultra-low mass PBHs can mimic the signal arising due to the non-standard reheating epoch before PBH domination. Finally, we point out that this degeneracy can be broken by the simultaneous detection of the first peak in the SGWB, which is typically induced by the inflationary adiabatic perturbations.

Figures

The comparison of our adopted interpolation function (Eq.~\eqref{Spl}) and numerical results for $S_{\rm plateau}$ for different values of $w$.

The comparison of our adopted interpolation function (Eq.~\eqref{Spl}) and numerical results for $S_{\rm plateau}$ for different values of $w$.


\textbf{Left panel:} The dimensionless spectral energy density of the induced stochastic GW background (ISGWB) is plotted as a function of frequency for the initial PBH mass $\MPBH =5 \times 10^7 {\rm g}$ and $\beta_f= 6 \times 10^{-9}$ with different reheating histories. Note that we use a very tiny deviation in the EOS of the universe before PBH domination, which leads to significant changes in the ISGWB spectra. \textbf{Right panel:} We have shown the effect of memory burden on the ISGWB spectrum for PBH parameters $\MPBH =7 \times 10^5 {\rm g}$ and $\beta_f=5 \times 10^{-8}$ and compared it with the standard case. To do that, we assume standard RD before PBH domination.

\textbf{Left panel:} The dimensionless spectral energy density of the induced stochastic GW background (ISGWB) is plotted as a function of frequency for the initial PBH mass $\MPBH =5 \times 10^7 {\rm g}$ and $\beta_f= 6 \times 10^{-9}$ with different reheating histories. Note that we use a very tiny deviation in the EOS of the universe before PBH domination, which leads to significant changes in the ISGWB spectra. \textbf{Right panel:} We have shown the effect of memory burden on the ISGWB spectrum for PBH parameters $\MPBH =7 \times 10^5 {\rm g}$ and $\beta_f=5 \times 10^{-8}$ and compared it with the standard case. To do that, we assume standard RD before PBH domination.


\textbf{Left panel:} The dimensionless spectral energy density of the induced stochastic GW background (ISGWB) is plotted as a function of frequency for the initial PBH mass $\MPBH =5 \times 10^7 {\rm g}$ and $\beta_f= 6 \times 10^{-9}$ with different reheating histories. Note that we use a very tiny deviation in the EOS of the universe before PBH domination, which leads to significant changes in the ISGWB spectra. \textbf{Right panel:} We have shown the effect of memory burden on the ISGWB spectrum for PBH parameters $\MPBH =7 \times 10^5 {\rm g}$ and $\beta_f=5 \times 10^{-8}$ and compared it with the standard case. To do that, we assume standard RD before PBH domination.

\textbf{Left panel:} The dimensionless spectral energy density of the induced stochastic GW background (ISGWB) is plotted as a function of frequency for the initial PBH mass $\MPBH =5 \times 10^7 {\rm g}$ and $\beta_f= 6 \times 10^{-9}$ with different reheating histories. Note that we use a very tiny deviation in the EOS of the universe before PBH domination, which leads to significant changes in the ISGWB spectra. \textbf{Right panel:} We have shown the effect of memory burden on the ISGWB spectrum for PBH parameters $\MPBH =7 \times 10^5 {\rm g}$ and $\beta_f=5 \times 10^{-8}$ and compared it with the standard case. To do that, we assume standard RD before PBH domination.


We plot the ISGWB spectral energy density with (solid red: $PS1$) and without (dashed red) memory burden effect and also plot SGWB for the degenerate set of parameters (solid blue: $PS2$) with different background equations of state before PBH domination. Evidently, in these cases of the high-frequency peak or the PBH density fluctuation peak, PBH formation during reheating and evaporation due to standard Hawking evaporation can mimic the effect of memory burden in the case of PBH formation during RD. However, this degeneracy is broken if we can simultaneously also detect the amplitude of the first peak or the inflationary adiabatic SGWB peak.

We plot the ISGWB spectral energy density with (solid red: $PS1$) and without (dashed red) memory burden effect and also plot SGWB for the degenerate set of parameters (solid blue: $PS2$) with different background equations of state before PBH domination. Evidently, in these cases of the high-frequency peak or the PBH density fluctuation peak, PBH formation during reheating and evaporation due to standard Hawking evaporation can mimic the effect of memory burden in the case of PBH formation during RD. However, this degeneracy is broken if we can simultaneously also detect the amplitude of the first peak or the inflationary adiabatic SGWB peak.


The rainbow-coloured contours show the values of the EOS $w_2$ of $PS2$, required to mimic the memory burden effect as a function of memory burden parameter $n_1$ and PBH parameter $M_{\rm PBH1}$ for a few fixed values of the other memory burden parameter $q_1$ of $PS1$, which directly follows from Eq.~\eqref{con1} and \eqref{con2}. Colours in the contours refer to different values of $w_2$ as listed in the colour bar on the right. As we set the range of this plot $0<w_2<1$, we can see that for a fixed value of $q_1$, it is not possible to cover the full range of $n_1$ with the variation of reheating history parameter $w_2$ and PBH mass $M_{\rm PBH1}$. It is clear, however, that variations of $n_1$, $q_1$, and $M_{\rm PBH1}$ of $PS1$ can mimic the effects of any values of $w_2$ of $PS2$. We also plot the light yellow shaded region where the required PBH mass of $PS2$, $M_{\rm PBH2} > 5\times 10^8 {\rm g}$, and thus this part of the parameter space is excluded from BBN bound.

The rainbow-coloured contours show the values of the EOS $w_2$ of $PS2$, required to mimic the memory burden effect as a function of memory burden parameter $n_1$ and PBH parameter $M_{\rm PBH1}$ for a few fixed values of the other memory burden parameter $q_1$ of $PS1$, which directly follows from Eq.~\eqref{con1} and \eqref{con2}. Colours in the contours refer to different values of $w_2$ as listed in the colour bar on the right. As we set the range of this plot $0<w_2<1$, we can see that for a fixed value of $q_1$, it is not possible to cover the full range of $n_1$ with the variation of reheating history parameter $w_2$ and PBH mass $M_{\rm PBH1}$. It is clear, however, that variations of $n_1$, $q_1$, and $M_{\rm PBH1}$ of $PS1$ can mimic the effects of any values of $w_2$ of $PS2$. We also plot the light yellow shaded region where the required PBH mass of $PS2$, $M_{\rm PBH2} > 5\times 10^8 {\rm g}$, and thus this part of the parameter space is excluded from BBN bound.


The rainbow-coloured contours show the values of the EOS $w_2$ of $PS2$, required to mimic the memory burden effect as a function of memory burden parameter $n_1$ and PBH parameter $M_{\rm PBH1}$ for a few fixed values of the other memory burden parameter $q_1$ of $PS1$, which directly follows from Eq.~\eqref{con1} and \eqref{con2}. Colours in the contours refer to different values of $w_2$ as listed in the colour bar on the right. As we set the range of this plot $0<w_2<1$, we can see that for a fixed value of $q_1$, it is not possible to cover the full range of $n_1$ with the variation of reheating history parameter $w_2$ and PBH mass $M_{\rm PBH1}$. It is clear, however, that variations of $n_1$, $q_1$, and $M_{\rm PBH1}$ of $PS1$ can mimic the effects of any values of $w_2$ of $PS2$. We also plot the light yellow shaded region where the required PBH mass of $PS2$, $M_{\rm PBH2} > 5\times 10^8 {\rm g}$, and thus this part of the parameter space is excluded from BBN bound.

The rainbow-coloured contours show the values of the EOS $w_2$ of $PS2$, required to mimic the memory burden effect as a function of memory burden parameter $n_1$ and PBH parameter $M_{\rm PBH1}$ for a few fixed values of the other memory burden parameter $q_1$ of $PS1$, which directly follows from Eq.~\eqref{con1} and \eqref{con2}. Colours in the contours refer to different values of $w_2$ as listed in the colour bar on the right. As we set the range of this plot $0<w_2<1$, we can see that for a fixed value of $q_1$, it is not possible to cover the full range of $n_1$ with the variation of reheating history parameter $w_2$ and PBH mass $M_{\rm PBH1}$. It is clear, however, that variations of $n_1$, $q_1$, and $M_{\rm PBH1}$ of $PS1$ can mimic the effects of any values of $w_2$ of $PS2$. We also plot the light yellow shaded region where the required PBH mass of $PS2$, $M_{\rm PBH2} > 5\times 10^8 {\rm g}$, and thus this part of the parameter space is excluded from BBN bound.


References
  • [1] Y.B. Zel’dovich and I.D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, Sov. Astron. 10 (1967) 602.
  • [2] S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 152 (1971) 75.
  • [3] B.J. Carr and S.W. Hawking, Black holes in the early Universe, Mon. Not. Roy. Astron. Soc. 168 (1974) 399.
  • [4] M.Y. Khlopov, B.A. Malomed, I.B. Zeldovich and Y.B. Zeldovich, Gravitational instability of scalar fields and formation of primordial black holes, Mon. Not. Roy. Astron. Soc. 215 (1985) 575.
  • [5] A. Escrivà, F. Kuhnel and Y. Tada, Primordial Black Holes, 2211.05767.
  • [6] LISA Cosmology Working Group collaboration, Primordial black holes and their gravitational-wave signatures, 2310.19857.
  • [7] B. Carr and F. Kuhnel, Primordial black holes as dark matter candidates, SciPost Phys. Lect. Notes 48 (2022) 1 [2110.02821].
  • [8] S.W. Hawking, Black hole explosions, Nature 248 (1974) 30.
  • [9] C. Rovelli, Loop quantum gravity, Living Rev. Rel. 1 (1998) 1 [gr-qc/9710008].
  • [10] S.D. Mathur and C.J. Plumberg, Correlations in Hawking radiation and the infall problem, JHEP 09 (2011) 093 [1101.4899].
  • [11] T. Papanikolaou, C. Tzerefos, S. Basilakos and E.N. Saridakis, Scalar induced gravitational waves from primordial black hole Poisson fluctuations in f(R) gravity, JCAP 10 (2022) 013 [2112.15059].
  • [12] X. Calmet, S.D.H. Hsu and M. Sebastianutti, Quantum gravitational corrections to particle creation by black holes, Phys. Lett. B 841 (2023) 137820 [2303.00310].
  • [13] D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198.
  • [14] B. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, Constraints on primordial black holes, Rept. Prog. Phys. 84 (2021) 116902 [2002.12778].
  • [15] J. Auffinger, Primordial black hole constraints with Hawking radiation—A review, Prog. Part. Nucl. Phys. 131 (2023) 104040 [2206.02672].
  • [16] K. Inomata, K. Kohri, T. Nakama and T. Terada, Gravitational Waves Induced by Scalar Perturbations during a Gradual Transition from an Early Matter Era to the Radiation Era, JCAP 10 (2019) 071 [1904.12878].
  • [17] K. Inomata, K. Kohri, T. Nakama and T. Terada, Enhancement of Gravitational Waves Induced by Scalar Perturbations due to a Sudden Transition from an Early Matter Era to the Radiation Era, Phys. Rev. D 100 (2019) 043532 [1904.12879].
  • [18] K. Inomata, M. Kawasaki, K. Mukaida, T. Terada and T.T. Yanagida, Gravitational Wave Production right after a Primordial Black Hole Evaporation, Phys. Rev. D 101 (2020) 123533 [2003.10455].
  • [19] G. White, L. Pearce, D. Vagie and A. Kusenko, Detectable Gravitational Wave Signals from Affleck-Dine Baryogenesis, Phys. Rev. Lett. 127 (2021) 181601 [2105.11655].
  • [20] N. Bhaumik, A. Ghoshal and M. Lewicki, Doubly peaked induced stochastic gravitational wave background: testing baryogenesis from primordial black holes, JHEP 07 (2022) 130 [2205.06260].
  • [21] N. Bhaumik, A. Ghoshal, R.K. Jain and M. Lewicki, Distinct signatures of spinning PBH domination and evaporation: doubly peaked gravitational waves, dark relics and CMB complementarity, JHEP 05 (2023) 169 [2212.00775].
  • [22] N. Bhaumik, R.K. Jain and M. Lewicki, Ultralow mass primordial black holes in the early Universe can explain the pulsar timing array signal, Phys. Rev. D 108 (2023) 123532 [2308.07912].
  • [23] T. Papanikolaou, V. Vennin and D. Langlois, Gravitational waves from a universe filled with primordial black holes, JCAP 03 (2021) 053 [2010.11573].
  • [24] G. Domènech, C. Lin and M. Sasaki, Gravitational wave constraints on the primordial black hole dominated early universe, JCAP 04 (2021) 062 [2012.08151].
  • [25] I. Dalianis and C. Kouvaris, Gravitational waves from density perturbations in an early matter domination era, JCAP 07 (2021) 046 [2012.09255].
  • [26] G. Domènech, Scalar Induced Gravitational Waves Review, Universe 7 (2021) 398 [2109.01398].
  • [27] G. Domènech, V. Takhistov and M. Sasaki, Exploring evaporating primordial black holes with gravitational waves, Phys. Lett. B 823 (2021) 136722 [2105.06816].
  • [28] B.J. Carr, Some cosmological consequences of primordial black-hole evaporations, Astrophys. J. 206 (1976) 8.
  • [29] J.C. Hidalgo, L.A. Urena-Lopez and A.R. Liddle, Unification models with reheating via Primordial Black Holes, Phys. Rev. D 85 (2012) 044055 [1107.5669].
  • [30] J. Martin, T. Papanikolaou and V. Vennin, Primordial black holes from the preheating instability in single-field inflation, JCAP 01 (2020) 024 [1907.04236].
  • [31] D. Hooper, G. Krnjaic and S.D. McDermott, Dark Radiation and Superheavy Dark Matter from Black Hole Domination, JHEP 08 (2019) 001 [1905.01301].
  • [32] D. Hooper, G. Krnjaic, J. March-Russell, S.D. McDermott and R. Petrossian-Byrne, Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe, 2004.00618.
  • [33] D. Hooper and G. Krnjaic, GUT Baryogenesis With Primordial Black Holes, Phys. Rev. D 103 (2021) 043504 [2010.01134].
  • [34] N. Bernal and O. Zapata, Dark Matter in the Time of Primordial Black Holes, JCAP 03 (2021) 015 [2011.12306].
  • [35] A. Cheek, L. Heurtier, Y.F. Perez-Gonzalez and J. Turner, Primordial black hole evaporation and dark matter production. II. Interplay with the freeze-in or freeze-out mechanism, Phys. Rev. D 105 (2022) 015023 [2107.00016].
  • [36] A. Cheek, L. Heurtier, Y.F. Perez-Gonzalez and J. Turner, Evaporation of primordial black holes in the early Universe: Mass and spin distributions, Phys. Rev. D 108 (2023) 015005 [2212.03878].
  • [37] M. Riajul Haque, E. Kpatcha, D. Maity and Y. Mambrini, Primordial black hole reheating, Phys. Rev. D 108 (2023) 063523 [2305.10518].
  • [38] R. Calabrese, M. Chianese, J. Gunn, G. Miele, S. Morisi and N. Saviano, Limits on light primordial black holes from high-scale leptogenesis, Phys. Rev. D 107 (2023) 123537 [2305.13369].
  • [39] B. Barman, S. Jyoti Das, M.R. Haque and Y. Mambrini, Leptogenesis, primordial gravitational waves, and PBH-induced reheating, Phys. Rev. D 110 (2024) 043528 [2403.05626].
  • [40] G. Dvali and C. Gomez, Black Hole’s Quantum N-Portrait, Fortsch. Phys. 61 (2013) 742 [1112.3359].
  • [41] G. Dvali and C. Gomez, Black Holes as Critical Point of Quantum Phase Transition, Eur. Phys. J. C 74 (2014) 2752 [1207.4059].
  • [42] G. Dvali, C. Gomez and D. Lüst, Classical Limit of Black Hole Quantum N-Portrait and BMS Symmetry, Phys. Lett. B 753 (2016) 173 [1509.02114].
  • [43] G. Dvali, J.S. Valbuena-Bermúdez and M. Zantedeschi, Memory Burden Effect in Black Holes and Solitons: Implications for PBH, 2405.13117.
  • [44] G. Dvali, L. Eisemann, M. Michel and S. Zell, Black hole metamorphosis and stabilization by memory burden, Phys. Rev. D 102 (2020) 103523 [2006.00011].
  • [45] G. Dvali, A Microscopic Model of Holography: Survival by the Burden of Memory, 1810.02336.
  • [46] A. Alexandre, G. Dvali and E. Koutsangelas, New Mass Window for Primordial Black Holes as Dark Matter from Memory Burden Effect, . (2024) [2402.14069].
  • [47] V. Thoss, A. Burkert and K. Kohri, Breakdown of Hawking Evaporation opens new Mass Window for Primordial Black Holes as Dark Matter Candidate, . (2024) [2402.17823].
  • [48] M.R. Haque, S. Maity, D. Maity and Y. Mambrini, Quantum effects on the evaporation of PBHs: contributions to dark matter, JCAP 07 (2024) 002 [2404.16815].
  • [49] M. Tamta, N. Raj and P. Sharma, Breaking into the window of primordial black hole dark matter with x-ray microlensing, 2405.20365.
  • [50] S. Balaji, G. Domènech, G. Franciolini, A. Ganz and J. Tränkle, Probing modified Hawking evaporation with gravitational waves from the primordial black hole dominated universe, . (2024) [2403.14309].
  • [51] M. Pearce, L. Pearce, G. White and C. Balazs, Gravitational wave signals from early matter domination: interpolating between fast and slow transitions, JCAP 06 (2024) 021 [2311.12340].
  • [52] R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, 2006.16182.
  • [53] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [1807.06211].
  • [54] P. Meszaros, The behaviour of point masses in an expanding cosmological substratum, Astron. Astrophys. 37 (1974) 225.
  • [55] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, Oxford (2005), 10.1017/CBO9780511790553.
  • [56] V. Poulin, P.D. Serpico and J. Lesgourgues, A fresh look at linear cosmological constraints on a decaying dark matter component, JCAP 08 (2016) 036 [1606.02073].
  • [57] C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072].
  • [58] J.M. Bardeen, J.R. Bond, N. Kaiser and A.S. Szalay, The Statistics of Peaks of Gaussian Random Fields, Astrophys. J. 304 (1986) 15.
  • [59] N. Bhaumik and R.K. Jain, Small scale induced gravitational waves from primordial black holes, a stringent lower mass bound, and the imprints of an early matter to radiation transition, Phys. Rev. D 104 (2021) 023531 [2009.10424].
  • [60] J.R. Espinosa, D. Racco and A. Riotto, A Cosmological Signature of the SM Higgs Instability: Gravitational Waves, JCAP 09 (2018) 012 [1804.07732].
  • [61] LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 [1411.4547].
  • [62] LIGO Scientific, Virgo collaboration, GW150914: Implications for the stochastic gravitational wave background from binary black holes, Phys. Rev. Lett. 116 (2016) 131102 [1602.03847].
  • [63] LIGO Scientific, Virgo collaboration, Search for the isotropic stochastic background using data from Advanced LIGO’s second observing run, Phys. Rev. D 100 (2019) 061101 [1903.02886].
  • [64] M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002.
  • [65] S. Hild et al., Sensitivity Studies for Third-Generation Gravitational Wave Observatories, Class. Quant. Grav. 28 (2011) 094013 [1012.0908].
  • [66] N. Bartolo et al., Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves, JCAP 12 (2016) 026 [1610.06481].
  • [67] C. Caprini, D.G. Figueroa, R. Flauger, G. Nardini, M. Peloso, M. Pieroni et al., Reconstructing the spectral shape of a stochastic gravitational wave background with LISA, JCAP 11 (2019) 017 [1906.09244].
  • [68] LISA Cosmology Working Group collaboration, Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel. 26 (2023) 5 [2204.05434].
  • [69] L. Badurina et al., AION: An Atom Interferometer Observatory and Network, JCAP 05 (2020) 011 [1911.11755].
  • [70] AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, EPJ Quant. Technol. 7 (2020) 6 [1908.00802].
  • [71] A. Sesana et al., Unveiling the gravitational universe at µ-Hz frequencies, Exper. Astron. 51 (2021) 1333 [1908.11391].
  • [72] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199.
  • [73] D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198.
  • [74] J.H. MacGibbon, Quark and gluon jet emission from primordial black holes. 2. The Lifetime emission, Phys. Rev. D 44 (1991) 376.
  • [75] J.M. Ezquiaga, J. Garcia-Bellido and E. Ruiz Morales, Primordial Black Hole production in Critical Higgs Inflation, Phys. Lett. B 776 (2018) 345 [1705.04861].
  • [76] J. Garcia-Bellido and E. Ruiz Morales, Primordial black holes from single field models of inflation, Phys. Dark Univ. 18 (2017) 47 [1702.03901].
  • [77] K. Kannike, L. Marzola, M. Raidal and H. Veermäe, Single Field Double Inflation and Primordial Black Holes, JCAP 09 (2017) 020 [1705.06225].
  • [78] M.P. Hertzberg and M. Yamada, Primordial Black Holes from Polynomial Potentials in Single Field Inflation, Phys. Rev. D97 (2018) 083509 [1712.09750].
  • [79] M. Cicoli, V.A. Diaz and F.G. Pedro, Primordial Black Holes from String Inflation, JCAP 06 (2018) 034 [1803.02837].
  • [80] N. Bhaumik and R.K. Jain, Primordial black holes dark matter from inflection point models of inflation and the effects of reheating, JCAP 01 (2020) 037 [1907.04125].
  • [81] G. Ballesteros, J. Rey, M. Taoso and A. Urbano, Primordial black holes as dark matter and gravitational waves from single-field polynomial inflation, JCAP 07 (2020) 025 [2001.08220].
  • [82] H.V. Ragavendra, P. Saha, L. Sriramkumar and J. Silk, Primordial black holes and secondary gravitational waves from ultraslow roll and punctuated inflation, Phys. Rev. D 103 (2021) 083510 [2008.12202].
  • [83] H.V. Ragavendra and L. Sriramkumar, Observational Imprints of Enhanced Scalar Power on Small Scales in Ultra Slow Roll Inflation and Associated Non-Gaussianities, Galaxies 11 (2023) 34 [2301.08887].
  • [84] S. Bhattacharya, S. Mohanty and P. Parashari, Primordial black holes and gravitational waves in nonstandard cosmologies, Phys. Rev. D 102 (2020) 043522 [1912.01653].
  • [85] K. Harigaya, K. Inomata and T. Terada, Induced gravitational waves with kination era for recent pulsar timing array signals, Phys. Rev. D 108 (2023) 123538 [2309.00228].
  • [86] L. Liu, Z.-C. Chen and Q.-G. Huang, Probing the equation of state of the early Universe with pulsar timing arrays, JCAP 11 (2023) 071 [2307.14911].
  • [87] G. Domènech, S. Pi, A. Wang and J. Wang, Induced gravitational wave interpretation of PTA data: a complete study for general equation of state, JCAP 08 (2024) 054 [2402.18965].
  • [88] S. Maity, N. Bhaumik, M.R. Haque, D. Maity and L. Sriramkumar, Constraining the history of reheating with the NANOGrav 15-year data, 2403.16963.
  • [89] N. Aggarwal et al., Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies, Living Rev. Rel. 24 (2021) 4 [2011.12414].
  • [90] M. Goryachev, W.M. Campbell, I.S. Heng, S. Galliou, E.N. Ivanov and M.E. Tobar, Rare Events Detected with a Bulk Acoustic Wave High Frequency Gravitational Wave Antenna, Phys. Rev. Lett. 127 (2021) 071102 [2102.05859].
  • [91] V. Domcke, C. Garcia-Cely and N.L. Rodd, Novel Search for High-Frequency Gravitational Waves with Low-Mass Axion Haloscopes, Phys. Rev. Lett. 129 (2022) 041101 [2202.00695].
  • [92] T. Bringmann, V. Domcke, E. Fuchs and J. Kopp, High-frequency gravitational wave detection via optical frequency modulation, Phys. Rev. D 108 (2023) L061303 [2304.10579].
  • [93] D. Kondo, Exploration to early universe by Josephson Junction Switching Current Detector, 2407.13630.
  • [94] J.R. Valero, J.R.N. Madrid, D. Blas, A.D. Morcillo, I.G. Irastorza, B. Gimeno et al., High-frequency gravitational waves detection with the BabyIAXO haloscopes, 2407.20482.
  • [95] D. Carney, G. Higgins, G. Marocco and M. Wentzel, A Superconducting Levitated Detector of Gravitational Waves, 2408.01583.
  • [96] V. Domcke, S.A.R. Ellis and N.L. Rodd, Magnets are Weber Bar Gravitational Wave Detectors, 2408.01483.
  • [97] A. Hook, Baryogenesis from Hawking Radiation, Phys. Rev. D 90 (2014) 083535 [1404.0113].
  • [98] T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter, and density perturbation from primordial black holes, Phys. Rev. D 89 (2014) 103501 [1401.1909].
  • [99] Y. Hamada and S. Iso, Baryon asymmetry from primordial black holes, PTEP 2017 (2017) 033B02 [1610.02586].
  • [100] L. Morrison, S. Profumo and Y. Yu, Melanopogenesis: Dark Matter of (almost) any Mass and Baryonic Matter from the Evaporation of Primordial Black Holes weighing a Ton (or less), JCAP 05 (2019) 005 [1812.10606].
  • [101] Y.F. Perez-Gonzalez and J. Turner, Assessing the tension between a black hole dominated early universe and leptogenesis, Phys. Rev. D 104 (2021) 103021 [2010.03565].
  • [102] N. Smyth, L. Santos-Olmsted and S. Profumo, Gravitational baryogenesis and dark matter from light black holes, JCAP 03 (2022) 013 [2110.14660].
  • [103] A. Ambrosone, R. Calabrese, D.F.G. Fiorillo, G. Miele and S. Morisi, Towards baryogenesis via absorption from primordial black holes, Phys. Rev. D 105 (2022) 045001 [2106.11980].
  • [104] R. Calabrese, M. Chianese, J. Gunn, G. Miele, S. Morisi and N. Saviano, Impact of primordial black holes on heavy neutral leptons searches in the framework of resonant leptogenesis, Phys. Rev. D 109 (2024) 103001 [2311.13276].
  • [105] T.C. Gehrman, B. Shams Es Haghi, K. Sinha and T. Xu, Baryogenesis, primordial black holes and MHz–GHz gravitational waves, JCAP 02 (2023) 062 [2211.08431].
  • [106] P. Gondolo, P. Sandick and B. Shams Es Haghi, Effects of primordial black holes on dark matter models, Phys. Rev. D 102 (2020) 095018 [2009.02424].
  • [107] A.M. Green, Supersymmetry and primordial black hole abundance constraints, Phys. Rev. D 60 (1999) 063516 [astro-ph/9903484].
  • [108] M.Y. Khlopov, A. Barrau and J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe, Class. Quant. Grav. 23 (2006) 1875 [astro-ph/0406621].
  • [109] D.-C. Dai, K. Freese and D. Stojkovic, Constraints on dark matter particles charged under a hidden gauge group from primordial black holes, JCAP 06 (2009) 023 [0904.3331].
  • [110] R. Allahverdi, J. Dent and J. Osinski, Nonthermal production of dark matter from primordial black holes, Phys. Rev. D 97 (2018) 055013 [1711.10511].
  • [111] O. Lennon, J. March-Russell, R. Petrossian-Byrne and H. Tillim, Black Hole Genesis of Dark Matter, JCAP 04 (2018) 009 [1712.07664].
  • [112] I. Masina, Dark matter and dark radiation from evaporating primordial black holes, Eur. Phys. J. Plus 135 (2020) 552 [2004.04740].
  • [113] I. Baldes, Q. Decant, D.C. Hooper and L. Lopez-Honorez, Non-Cold Dark Matter from Primordial Black Hole Evaporation, JCAP 08 (2020) 045 [2004.14773].
  • [114] A. Cheek, L. Heurtier, Y.F. Perez-Gonzalez and J. Turner, Primordial black hole evaporation and dark matter production. I. Solely Hawking radiation, Phys. Rev. D 105 (2022) 015022 [2107.00013].
  • [115] N. Bernal, Y.F. Perez-Gonzalez and Y. Xu, Superradiant production of heavy dark matter from primordial black holes, Phys. Rev. D 106 (2022) 015020 [2205.11522].
  • [116] D. Borah, S. Jyoti Das, R. Samanta and F.R. Urban, PBH-infused seesaw origin of matter and unique gravitational waves, JHEP 03 (2023) 127 [2211.15726].
  • [117] M.R. Haque, E. Kpatcha, D. Maity and Y. Mambrini, Primordial black hole versus inflaton, Phys. Rev. D 109 (2024) 023521.
  • [118] B. Barman, M.R. Haque and O. Zapata, Gravitational wave signatures of cogenesis from a burdened PBH, 2405.15858.
  • [119] C. Lunardini and Y.F. Perez-Gonzalez, Dirac and Majorana neutrino signatures of primordial black holes, JCAP 08 (2020) 014 [1910.07864].
  • [120] C. Keith, D. Hooper, N. Blinov and S.D. McDermott, Constraints on Primordial Black Holes From Big Bang Nucleosynthesis Revisited, Phys. Rev. D 102 (2020) 103512 [2006.03608].
  • [121] R.-G. Cai, S. Sun, B. Zhang and Y.-L. Zhang, Dark fluxes from accreting black holes through several mechanisms, Eur. Phys. J. C 82 (2022) 245 [2009.02315].
  • [122] I. Masina, Dark Matter and Dark Radiation from Evaporating Kerr Primordial Black Holes, Grav. Cosmol. 27 (2021) 315 [2103.13825].
  • [123] A. Arbey, J. Auffinger, P. Sandick, B. Shams Es Haghi and K. Sinha, Precision calculation of dark radiation from spinning primordial black holes and early matter-dominated eras, Phys. Rev. D 103 (2021) 123549 [2104.04051].
  • [124] M.J. Baker and A. Thamm, Probing the particle spectrum of nature with evaporating black holes, SciPost Phys. 12 (2022) 150 [2105.10506].
  • [125] M. Calzà, J. March-Russell and J.a.G. Rosa, Evaporating primordial black holes, the string axiverse, and hot dark radiation, 2110.13602.
  • [126] CMB-HD collaboration, Snowmass2021 CMB-HD White Paper, 2203.05728.
  • [127] CMB-Bharat collaboration, Exploring Cosmic History and Origin, http://cmb-bharat.in (2018) .