Author(s)
Sedda, Manuel Arca, Berry, Christopher P.L., Jani, Karan, Amaro-Seoane, Pau, Auclair, Pierre, Baird, Jonathon, Baker, Tessa, Berti, Emanuele, Breivik, Katelyn, Caprini, Chiara, Chen, Xian, Doneva, Daniela, Ezquiaga, Jose M., Ford, K.E. Saavik, Katz, Michael L., Kolkowitz, Shimon, McKernan, Barry, Mueller, Guido, Nardini, Germano, Pikovski, Igor, Rajendran, Surjeet, Sesana, Alberto, Shao, Lijing, Tamanini, Nicola, Warburton, Niels, Witek, Helvi, Wong, Kaze, Zevin, MichaelAbstract
Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the \sim 10–10$^{3}$ Hz band of ground-based observatories and the \sim 10^{-4}–10$^{− 1}$ Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass (\sim 10^{2}–10$^{4}$M$_{⊙}$) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.
References
- [1] M Longair: The Cosmic Century, Cambridge University Press, Cambridge, 2006
- [2] BS Sathyaprakash, BF Schutz: Physics, astrophysics and cosmology with gravitational waves, ['Living Rev.Rel.,12,2']
- [3] BP Abbott: Observation of gravitational waves from a binary black hole merger, ['Phys.Rev.Lett.,116,061102']
- [4] J Aasi: Advanced LIGO, ['Class.Quant.Grav.,32,074001']
- [5] F Acernese: Advanced Virgo: A second-generation interferometric gravitational wave detector, ['Class.Quant.Grav.,32,024001']
- [6] T Akutsu: KAGRA: 2.5 generation interferometric gravitational wave detector, ['Nature Astron.,3,35']
- [7] BP Abbott: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, ['Phys.Rev.,X9,031040']
- [8] BP Abbott: Exploring the sensitivity of next generation gravitational wave detectors, ['Class.Quant.Grav.,34,044001']
- [9] B Sathyaprakash: Scientific objectives of einstein telescope, ['Class.Quant.Grav.,29,124013']
- [10] S Hild: Sensitivity studies for third-generation gravitational wave observatories, ['Class.Quant.Grav.,28,094013']
- [11] Amaro-Seoane, P, et al.: Laser interferometer space antenna. arXiv:1702.00786 (2017)
- [12] A Klein: Science with the space-based interferometer eLISA: Supermassive black hole binaries, ['Phys.Rev.,D93,024003']
- [13] S Babak, J Gair, A Sesana, E Barausse, CF Sopuerta, CPL Berry, E Berti, P Amaro-Seoane, A Petiteau, A Klein: Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals, ['Phys.Rev.,D95,103012']
- [14] CPL Berry, SA Hughes, CF Sopuerta, AJK Chua, A Heffernan, K Holley-Bockelmann, DP Mihaylov, MC Miller, A Sesana: The unique potential of extreme mass-ratio inspirals for gravitational-wave astronomy, ['Bull.Am.Astron.Soc.,51,42']
- [15] A Sesana: Prospects for Multiband gravitational-wave astronomy after GW150914, ['Phys.Rev.Lett.,116,231102']
- [16] S Vitale: Multiband gravitational-wave astronomy: Parameter estimation and tests of general relativity with space- and ground-based detectors, ['Phys.Rev.Lett.,117,051102']
- [17] K Jani, D Shoemaker, C Cutler: Detectability of intermediate-mass black holes in Multiband gravitational wave astronomy, ['Nature Astron.,4,260']
- [18] C Liu, L Shao, J Zhao, Y Gao: Multiband observation of LIGO/Virgo binary black hole mergers in the gravitational-wave transient catalog GWTC-1, ['Mon.Not.Roy.Astron.Soc.,496,182']
- [19] K Breivik, CL Rodriguez, SL Larson, V Kalogera, FA Rasio: Distinguishing between formation channels for binary black holes with LISA, ['Astrophys.J.,830,L18']
- [20] A Nishizawa, E Berti, A Klein, A Sesana: eLISA eccentricity measurements as tracers of binary black hole formation, ['Phys.Rev.,D94,064020']
- [21] A Toubiana, S Marsat, S Babak, E Barausse, J Baker: Tests of general relativity with stellar-mass black hole binaries observed by LISA, ['Phys.Rev.,D101,104038']
- [22] RN Manchester: The international pulsar timing array, ['Class.Quant.Grav.,30,224010']
- [23] CMF Mingarelli, TJW Lazio, A Sesana, JE Greene, JA Ellis, CP Ma, S Croft, S Burke-Spolaor, SR Taylor: The local Nanohertz gravitational-wave landscape from supermassive black hole binaries, ['Nature Astron.,1,886']
- [24] M Pitkin, J Clark, MA Hendry, IS Heng, C Messenger, J Toher, G Woan, J Phys: Is there potential complementarity between LISA and pulsar timing?, Conf. Ser. 122 (2008) 012004
- [25] M Colpi: The gravitational wave view of massive black holes, ['Bull.Am.Astron.Soc.,51,432']
- [26] MA Sedda: The missing link in gravitational-wave astronomy: Discoveries waiting in the decihertz range, ['Class.Quant.Grav.,37,215011']
- [27] TB Littenberg, K Breivik, WR Brown, M Eracleous, JJ Hermes, K Holley-Bockelmann, K Kremer, T Kupfer, SL Larson: Gravitational wave survey of galactic ultra compact binaries, ['Bull.Am.Astron.Soc.,51,34']
- [28] V Kalogera: Deeper, Wider, Sharper: Next-generation ground-based gravitational-wave observations of binary black holes, ['Bull.Am.Astron.Soc.,51,242']
- [29] BP Abbott: GW170817: Measurements of neutron star radii and equation of state, ['Phys.Rev.Lett.,121,161101']
- [30] G Montana, L Tolos, M Hanauske, L Rezzolla: Constraining twin stars with GW170817, ['Phys.Rev.,D99,103009']
- [31] ER Most, LR Weih, L Rezzolla, J Schaffner-Bielich: New constraints on radii and tidal deformabilities of neutron stars from GW170817, ['Phys.Rev.Lett.,120,261103']
- [32] MW Coughlin, T Dietrich, B Margalit, BD Metzger: Multimessenger Bayesian parameter inference of a binary neutron star merger, ['Mon.Not.Roy.Astron.Soc.,489,L91']
- [33] B Margalit, BD Metzger: The multi-messenger matrix: The future of neutron star merger constraints on the nuclear equation of state, ['Astrophys.J.,880,L15']
- [34] BP Abbott: Estimating the contribution of dynamical ejecta in the Kilonova associated with GW170817, ['Astrophys.J.,850,L39']
- [35] R Chornock: The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South, ['Astrophys.J.,848,L19']
- [36] NR Tanvir: The emergence of a Lanthanide-Rich Kilonova following the merger of two neutron stars, ['Astrophys.J.,848,L27']
- [37] S Wanajo: Physical conditions for the r-process I. radioactive energy sources of kilonovae, ['Astrophys.J.,868,65']
- [38] DM Siegel, J Barnes, BD Metzger: The neutron star merger GW170817 points to collapsars as the main r-process source, ['Nature,569,241']
- [39] BP Abbott: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, ['Astrophys.J.,848,L13']
- [40] BP Abbott: Tests of general relativity with GW170817, ['Phys.Rev.Lett.,123,011102']
- [41] E Belgacem, Y Dirian, S Foffa, M Maggiore: Modified gravitational-wave propagation and standard sirens, ['Phys.Rev.,D98,023510']
- [42] E Belgacem: Testing modified gravity at cosmological distances with LISA standard sirens, ['JCAP,1907,024']
- [43] W Hillebrandt, M Kromer, FK Röpke, AJ Ruiter: Towards an understanding of Type Ia supernovae from a synthesis of theory and observations, ['Front.Phys.(Beijing),8,116']
- [44] D Maoz, F Mannucci, G Nelemans: Observational clues to the progenitors of Type-Ia supernovae, ['Ann.Rev.Astron.Astrophys.,52,107']
- [45] I Mandel, A Sesana, A Vecchio: The astrophysical science case for a decihertz gravitational-wave detector, ['Class.Quant.Grav.,35,054004']
- [46] BF Schutz: Determining the hubble constant from gravitational wave observations, ['Nature,323,310']
- [47] CL MacLeod, CJ Hogan: Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information, ['Phys.Rev.,D77,043512']
- [48] HY Chen, M Fishbach, DE Holz: A two per cent Hubble constant measurement from standard sirens within five years, ['Nature,562,545']
- [49] BP Abbott: A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo, ['Astrophys.J.,909,218']
- [50] K Kyutoku, N Seto: Gravitational-wave cosmography with LISA and the Hubble tension, ['Phys.Rev.,D95,083525']
- [51] W Del Pozzo, A Sesana, A Klein: Stellar binary black holes in the LISA band: a new class of standard sirens, ['Mon.Not.Roy.Astron.Soc.,475,3485']
- [52] C Cutler, DE Holz: Ultra-high precision cosmology from gravitational waves, ['Phys.Rev.,D80,104009']
- [53] A Nishizawa, A Taruya, S Saito: Tracing the redshift evolution of Hubble parameter with gravitational-wave standard sirens, ['Phys.Rev.,D83,084045']
- [54] Abbott, R., et al.: GWTC-2: Compact Binary Coalescences observed by LIGO and Virgo during the first half of the third observing run. arXiv:2010.14527 (2020)
- [55] I Mandel, R O’Shaughnessy: Compact binary Coalescences in the band of ground-based gravitational-wave detectors, ['Class.Quant.Grav.,27,114007']
- [56] S Stevenson, CPL Berry, I Mandel: Hierarchical analysis of gravitational-wave measurements of binary black hole spinorbit misalignments, ['Mon.Not.Roy.Astron.Soc.,471,2801']
- [57] C Talbot, E Thrane: Determining the population properties of spinning black holes, ['Phys.Rev.,D96,023012']
- [58] M Zevin, C Pankow, CL Rodriguez, L Sampson, E Chase, V Kalogera, FA Rasio: Constraining formation models of binary black holes with gravitational-wave observations, ['Astrophys.J.,846,82']
- [59] JW Barrett, SM Gaebel, CJ Neijssel, A Vigna-Gómez, S Stevenson, CPL Berry, WM Farr, I Mandel: Accuracy of inference on the physics of binary evolution from gravitational-wave observations, ['Mon.Not.Roy.Astron.Soc.,477,4685']
- [60] M Arca Sedda, M Benacquista: Using final black hole spins and masses to infer the formation history of the observed population of gravitational wave sources, ['Mon.Not.Roy.Astron.Soc.,482,2991']
- [61] M Arca Sedda, M Mapelli, M Spera, M Benacquista, N Giacobbo: Fingerprints of binary black hole formation channels encoded in the mass and spin of merger remnants, ['Astrophys.J.,894,133']
- [62] R Farmer, M Renzo, S de Mink, M Fishbach, S Justham: Constraints from gravitational wave detections of binary black hole mergers on the $^{12}\mathrm {C}\left (\alpha ,\gamma \right )^{16}\!\mathrm {O}$12C α,γ16O rate, ['Astrophys.J.Lett.,902,L36']
- [63] A Nishizawa, A Sesana, E Berti, A Klein: Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements, ['Mon.Not.Roy.Astron.Soc.,465,4375']
- [64] B Canuel: Exploring gravity with the MIGA large scale atom interferometer, ['Sci.Rep.,8,14064']
- [65] K Kremer, S Chatterjee, K Breivik, CL Rodriguez, SL Larson, FA Rasio: LISA sources in Milky Way globular clusters, ['Phys.Rev.Lett.,120,191103']
- [66] Randall, L., Xianyu, Z.Z.: Eccentricity without measuring eccentricity: Discriminating among stellar mass black hole binary formation channels. arXiv:1907.02283 (2019)
- [67] PC Peters: Gravitational radiation and the motion of two point masses, ['Phys.Rev.,136,B1224']
- [68] BP Abbott: Astrophysical implications of the binary black-hole merger GW150914, ['Astrophys.J.,818,L22']
- [69] J Samsing, E Ramirez-Ruiz: On the assembly rate of highly eccentric binary black hole mergers, ['Astrophys.J.,840,L14']
- [70] CL Rodriguez, P Amaro-Seoane, S Chatterjee, K Kremer, FA Rasio, J Samsing, CS Ye, M Zevin: Post-Newtonian dynamics in dense star clusters: Formation, Masses, and merger rates of highly-eccentric black hole binaries, ['Phys.Rev.,D98,123005']
- [71] L Randall, ZZ Xianyu: A direct probe of mass density near inspiraling binary black holes, ['Astrophys.J.,878,75']
- [72] DJ D’Orazio, J Samsing: Black hole mergers from globular clusters observable by LISA II: Resolved eccentric sources and the gravitational wave background, ['Mon.Not.Roy.Astron.Soc.,481,4775']
- [73] Arca-Sedda, M., Li, G., Kocsis, B.: Ordering the chaos: stellar black hole mergers from non-hierarchical triples. arXiv:1805.06458 (2018)
- [74] K Kremer: Post-Newtonian dynamics in dense star clusters: Binary black holes in the LISA Band, ['Phys.Rev.,D99,063003']
- [75] M Zevin, J Samsing, C Rodriguez, CJ Haster, E Ramirez-Ruiz: Eccentric black hole mergers in dense star clusters: The Role of Binary Encounters, ['Astrophys.J.,871,91']
- [76] X Chen, P Amaro-Seoane: Revealing the formation of stellar-mass black hole binaries: The need for deci-Hertz gravitational wave observatories, ['Astrophys.J.,842,L2']
- [77] SF Portegies Zwart, S McMillan: Black hole mergers in the universe, ['Astrophys.J.,528,L17']
- [78] M Giersz, N Leigh, A Hypki, N Lützgendorf, A Askar: MOCCA code for star cluster simulations - IV. A new scenario for intermediate mass black hole formation in globular clusters, ['Mon.Not.Roy.Astron.Soc.,454,3150']
- [79] Arca Sedda, M., Askar, A., Giersz, M.: MOCCA-SURVEY Database I. Intermediate mass black holes in Milky Way globular clusters and their connection to supermassive black holes. arXiv:1905.00902 (2019)
- [80] R Abbott: Properties and Astrophysical Implications of the 150 M⊙ Binary Black Hole Merger GW190521, ['Astrophys.J.Lett.,900,L13']
- [81] P Amaro-Seoane, JR Gair, M Freitag, M Coleman Miller, I Mandel, CJ Cutler, S Babak: Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals, ['Class.Quant.Grav.,24,R113']
- [82] DA Brown, H Fang, JR Gair, C Li, G Lovelace, I Mandel, KS Thorne: Prospects for detection of gravitational waves from intermediate-mass-ratio inspirals, ['Phys.Rev.Lett.,99,201102']
- [83] CL Rodriguez, I Mandel, JR Gair: Verifying the no-hair property of massive compact objects with intermediate-mass-ratio inspirals in advanced gravitational-wave detectors, ['Phys.Rev.,D85,062002']
- [84] CJ Haster, Z Wang, CPL Berry, S Stevenson, J Veitch, I Mandel: Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes, ['Mon.Not.Roy.Astron.Soc.,457,4499']
- [85] JH Chen, RF Shen: Tidal disruption of a main-sequence star by an intermediate-mass black hole: A bright decade, ['Astrophys.J.,867,20']
- [86] M Eracleous, S Gezari, A Sesana, T Bogdanovic, M MacLeod, N Roth, L Dai: An arena for multi-messenger astrophysics: Inspiral and tidal disruption of white dwarfs by massive black holes, ['Bull.Am.Astron.Soc.,51,10']
- [87] JM Ezquiaga, DE Holz: Jumping the gap: searching for LIGO’s biggest black holes. arXiv:http://arxiv.org/abs/2006.02211, ['Astrophys.J.Lett.,909,L23']
- [88] M Volonteri, P Natarajan: Journey to the MBH − σ relation: the fate of low mass black holes in the Universe, ['Mon.Not.Roy.Astron.Soc.,400,1911']
- [89] B McKernan, KES Ford, B Kocsis, W Lyra, LM Winter: Intermediate-mass black holes in AGN discs II. Model predictions and observational constraints, ['Mon.Not.Roy.Astron.Soc.,441,900']
- [90] I Bartos, B Kocsis, Z Haiman, S Márka: Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei, ['Astrophys.J.,835,165']
- [91] NC Stone, BD Metzger, Z Haiman: Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the final au problem, ['Mon.Not.Roy.Astron.Soc.,464,946']
- [92] B McKernan: Constraining stellar-mass black hole mergers in AGN Disks detectable with LIGO, ['Astrophys.J.,866,66']
- [93] X Chen, S Li, Z Cao: Massaredshift degeneracy for the gravitational-wave sources in the vicinity of supermassive black holes, ['Mon.Not.Roy.Astron.Soc.,485,L141']
- [94] L Gondán, B Kocsis, P Raffai, Z Frei: Eccentric black hole gravitational-wave capture sources in galactic nuclei: Distribution of binary parameters, ['Astrophys.J.,860,5']
- [95] A Secunda, J Bellovary, MM Mac Low, KE Saavik Ford, B McKernan, N Leigh, W Lyra, Z Sándor: Orbital migration of interacting stellar mass black holes in disks around supermassive black holes, ['Astrophys.J.,878,85']
- [96] A Rasskazov, B Kocsis: The rate of stellar mass black hole scattering in galactic nuclei, ['Astrophys.J.,881,20']
- [97] Y Yang, I Bartos, Z Haiman, B Kocsis, Z Marka, NC Stone, S Marka: AGN disks harden the mass distribution of stellar-mass binary black hole mergers, ['Astrophys.J.,876,122']
- [98] A Kosowsky, MS Turner: Gravitational radiation from colliding vacuum bubbles: Envelope approximation to many bubble collisions, ['Phys.Rev.,D47,4372']
- [99] M Kamionkowski, A Kosowsky, MS Turner: Gravitational radiation from first order phase transitions, ['Phys.Rev.,D49,2837']
- [100] G Gogoberidze, T Kahniashvili, A Kosowsky: The spectrum of gravitational radiation from primordial turbulence, ['Phys.Rev.,083002,D76']
- [101] C Caprini, R Durrer, G Servant: The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, ['JCAP,0912,024']
- [102] M Hindmarsh, SJ Huber, K Rummukainen, DJ Weir: Gravitational waves from the sound of a first order phase transition, ['Phys.Rev.Lett.,112,041301']
- [103] M Hindmarsh, SJ Huber, K Rummukainen, DJ Weir: Numerical simulations of acoustically generated gravitational waves at a first order phase transition, ['Phys.Rev.,D92,123009']
- [104] L Randall, G Servant: Gravitational waves from warped spacetime, ['JHEP,0705,054']
- [105] G Nardini, M Quiros, A Wulzer: A confining strong first-order electroweak phase transition, ['JHEP,0709,077']
- [106] T Konstandin, G Nardini, M Quiros: Gravitational backreaction effects on the holographic phase transition, ['Phys.Rev.,D82,083513']
- [107] T Konstandin, G Servant: Cosmological consequences of nearly conformal dynamics at the TeV scale, ['JCAP,1112,009']
- [108] S Bruggisser, B Von Harling, O Matsedonskyi, G Servant: Baryon asymmetry from a composite Higgs boson, ['Phys.Rev.Lett.,121,131801']
- [109] E Megías, G Nardini, M Quirós: Cosmological phase transitions in warped space: Gravitational Waves and Collider Signatures, ['JHEP,1809,095']
- [110] N Arkani-Hamed, T Han, M Mangano, LT Wang: Physics opportunities of a 100 TeV protonaproton collider, ['Phys.Rept.,652,1']
- [111] PW Graham, DE Kaplan, J Mardon, S Rajendran, WA Terrano: Dark matter direct detection with accelerometers, ['Phys.Rev.,D93,075029']
- [112] T Vachaspati, A Vilenkin: Gravitational radiation from cosmic strings, ['Phys.Rev.,D31,3052']
- [113] JJ Blanco-Pillado, KD Olum, B Shlaer: The number of cosmic string loops, ['Phys.Rev.,D89,023512']
- [114] P Auclair: Probing the gravitational wave background from cosmic strings with LISA, ['JCAP,2004,034']
- [115] SA Sanidas, RA Battye, BW Stappers: Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array, ['Phys.Rev.,D85,122003']
- [116] JJ Blanco-Pillado, KD Olum, X Siemens: New limits on cosmic strings from gravitational wave observation, ['Phys.Lett.,B778,392']
- [117] PL Bender, MC Begelman, JR Gair: Possible LISA follow-on mission scientific objectives, ['Class.Quant.Grav.,30,165017']
- [118] G Mueller, J Baker: Space based gravitational wave astronomy beyond LISA, ['Bull.Am.Astron.Soc.,51,243']
- [119] WR Hu, YL Wu: The Taiji Program in Space for gravitational wave physics and the nature of gravity, ['Natl.Sci.Rev.,4,685']
- [120] WH Ruan, ZK Guo, RG Cai, YZ Zhang: Taiji Program: Gravitational-wave sources, ['Int.J.Mod.Phys.,A35,2050075']
- [121] KA Kuns, H Yu, Y Chen, RX Adhikari: Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO, ['Phys.Rev.,D102,043001']
- [122] J Luo: TianQin: A space-borne gravitational wave detector, ['Class.Quant.Grav.,33,035010']
- [123] S Sato: The status of DECIGO, ['J.Phys.Conf.Ser.,840,012010']
- [124] Kawamura, S., et al.: Current status of space gravitational wave antenna DECIGO and B-DECIGO. arXiv:2006.13545 (2020)
- [125] J Crowder, NJ Cornish: Beyond LISA: Exploring future gravitational wave missions, ['Phys.Rev.,D72,083005']
- [126] McWilliams, S.T: Geostationary antenna for disturbance-free laser interferometry (GADFLI). arXiv:1111.3708 (2011)
- [127] Tinto, M., de Araujo, J.C.N., Aguiar, O.D., da Silva Alves, M.E.: A geostationary gravitational wave interferometer (GEOGRAWI). arXiv:1111.2576 (2011)
- [128] M Tinto, D DeBra, S Buchman, S Tilley: gLISA: geosynchronous Laser Interferometer Space Antenna concepts with off-the-shelf satellites, ['Rev.Sci.Instrum.,86,014501']
- [129] S Lacour: SAGE: finding IMBH in the black hole desert, ['Class.Quant.Grav.,36,195005']
- [130] GM Tino: SAGE: A proposal for a space atomic gravity explorer, ['Eur.Phys.J.,D73,228']
- [131] S Kolkowitz, I Pikovski, N Langellier, MD Lukin, RL Walsworth, J Ye: Gravitational wave detection with optical lattice atomic clocks, ['Phys.Rev.,D94,124043']
- [132] J Su, Q Wang, Q Wang, P Jetzer: Low-frequency gravitational wave detection via double optical clocks in space, ['Class.Quant.Grav.,35,085010']
- [133] Graham, P.W., Hogan, J.M., Kasevich, M.A., Rajendran, S., Romani, R.W.: Mid-band gravitational wave detection with precision atomic sensors. arXiv:1711.02225 (2017)
- [134] YA El-Neaj: AEDGE: atomic experiment for dark matter and gravity exploration in space, ['EPJ Quant.Technol.,7,6']
- [135] Arca Sedda, M., et al.: The Missing Link in Gravitational-Wave Astronomy: Discoveries waiting in the decihertz range. arXiv:1908.11375v1(2019)
- [136] Sesana, A, et al.: Unveiling the gravitational universe at μ-Hz Frequencies. arXiv:1908.11391 (2019)
- [137] Baibhav, V, et al.: Probing the nature of black holes: Deep in the mHz gravitational-wave sky. arXiv:1908.11390 (2019)
- [138] Baker, J, et al.: High angular resolution gravitational wave astronomy. arXiv:1908.11410 (2019)