Primordial cosmology and gravitational waves : from phase transitions to cosmic strings and primordial black holes

Author(s)

Auclair, Pierre

Abstract

The gravitational force governs the evolution of structures in the Universe, from the smallest scales, those of moons and planets, to galaxies, clusters, and to the evolution of the Universe itself. Its importance to describe the Universe around us is no longer to be demonstrated: the successes of general relativity have been accumulating for more than a century now. However it was not until the first direct detection of gravitational waves in 2015 by LIGO/Virgo that gravity, in the form of gravitational waves, became a direct observational tool to scrutinize the Universe in its darkest and most inaccessible corners, such as the neighbourhood of black holes and the first moments of the Big Bang. The perspectives offered by these new types of observations are comparable to those brought by the cosmic microwave background at the turn of the millennium, thus marking the beginning of precision cosmology. This PhD work is part of the exciting research topic of gravitational wave studies within the LIGO/Virgo/KAGRA collaboration -- the network of ground-based gravitational wave detectors currently in place -- and the LISA collaboration, the constellation of three satellites, separated by 2.5 millions of kilometers, designed to detect low frequency gravitational waves in space. The main subject of this thesis is the study of primordial cosmology -- i.e. the first instants of the Universe -- mainly through the prism of gravitational wave detectors. This manuscript has three independent parts. The first part of this thesis deals with cosmic strings, one-dimensional topological defects that could be formed during phase transitions in the primordial Universe. If formed, these relics of the early universe would be markers of the upheavals of our early universe. We study the evolution of the cosmic string network, in particular the density of loops and their gravitational wave emission, we make predictions for the future LISA mission, and finally constrain cosmic strings using the results of LIGO/Virgo/KAGRA. In a second part, we study the formation of primordial black holes at the end of inflation, a period of accelerated expansion in the early Universe. During this so-called preheating phase, which precedes the formation of standard model particles, the inflaton oscillates around the minimum of its potential possibly generating a metric instability at the origin of the formation of a large number of primordial black holes. This part of the thesis is therefore devoted to the study of this instability and to quantifying the production of primordial black holes using the excursion-set formalism. The third part is dedicated to first order phase transitions, in particular during the electroweak transition in extensions of the standard model. During the transition, a large amount of energy is transmitted to the ambient medium in the form of kinetic energy which can lead to turbulence. We therefore propose a model for this freely decaying turbulence and the resulting gravitational wave spectrum.

References
  • [1] Poincar´ e Henri. “Sur la Dynamique de l’´ electron”. In: Proc. Acad. Sci. Vol. 140. 1905, pp. 1504–1508.
  • [2] Albert Einstein. “On the electrodynamics of moving bodies”. In: Annalen Phys. 17 (1905), pp. 891–921. doi: 10.1002/andp.200590006.
  • [3] Albert Abraham Michelson and Edward Williams Morley. “On the Relative Motion of the Earth and the Luminiferous Ether”. In: Am. J. Sci. 34 (1887), pp. 333–345. doi: 10.2475/ ajs.s3-34.203.333.
  • [4] Albert Einstein. “Zur Allgemeinen Relativit¨ atstheorie”. In: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1915 (1915). [Addendum: Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1915, 799–801 (1915)], pp. 778–786.
  • [5] Albert Einstein. “Approximative Integration of the Field Equations of Gravitation”. In: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916 (1916), pp. 688–696.
  • [6] Albert Einstein. “¨ Uber Gravitationswellen”. In: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1918 (1918), pp. 154–167.
  • [7] Arthur Stanley Eddington. “The propagation of gravitational waves”. In: Proc. Roy. Soc. Lond. A 102 (1922), pp. 268–282. doi: 10.1098/rspa.1922.0085.
  • [8] Jorge L. Cervantes-Cota, S. Galindo-Uribarri, and G-F. Smoot. “A Brief History of Gravitational Waves”. In: Universe 2.3 (2016), p. 22. doi: 10.3390/universe2030022. arXiv: 1609.09400 [physics.hist-ph].
  • [9] F. A. E. Pirani. “Invariant formulation of gravitational radiation theory”. In: Phys. Rev. 105 (1957), pp. 1089–1099. doi: 10.1103/PhysRev.105.1089.
  • [10] Kip S. Thorne. Black holes and time warps: Einstein’s outrageous legacy. 1994. isbn: 978-0393-31276-8.
  • [11] J. Weber. “Detection and Generation of Gravitational Waves”. In: Phys. Rev. 117 (1960), pp. 306–313. doi: 10.1103/PhysRev.117.306.
  • [12] J. Weber. “Evidence for discovery of gravitational radiation”. In: Phys. Rev. Lett. 22 (1969), pp. 1320–1324. doi: 10.1103/PhysRevLett.22.1320.
  • [13] R. A. Hulse and J. H. Taylor. “Discovery of a pulsar in a binary system”. In: Astrophys. J. Lett. 195 (1975), pp. L51–L53. doi: 10.1086/181708.
  • [14] J. H. Taylor, L. A. Fowler, and P. M. McCulloch. “Measurements of general relativistic effects in the binary pulsar PSR 1913+16”. In: Nature 277 (1979), pp. 437–440. doi: 10. 1038/277437a0. 263 264 BIBLIOGRAPHY
  • [15] M. V. Sazhin. “Opportunities for detecting ultralong gravitational waves”. In: Soviet Ast. 22 (Feb. 1978), pp. 36–38.
  • [16] Steven L. Detweiler. “Pulsar timing measurements and the search for gravitational waves”. In: Astrophys. J. 234 (1979), pp. 1100–1104. doi: 10.1086/157593.
  • [17] J. P. W. Verbiest et al. “The International Pulsar Timing Array: First Data Release”. In: Mon. Not. Roy. Astron. Soc. 458.2 (2016), pp. 1267–1288. doi: 10.1093/mnras/stw347. arXiv: 1602.03640 [astro-ph.IM].
  • [18] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black Hole Merger”. In: Phys. Rev. Lett. 116.LIGO-P150914 (2016), p. 061102. doi: 10.1103/PhysRevLett.116. 061102. arXiv: 1602.03837 [gr-qc].
  • [19] R. Abbott et al. “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run”. In: P2000061 (Oct. 2020). arXiv: 2010. 14527 [gr-qc].
  • [20] B. P. Abbott et al. “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral”. In: Phys. Rev. Lett. 119.LIGO-P170817 (2017), p. 161101. doi: 10.1103/ PhysRevLett.119.161101. arXiv: 1710.05832 [gr-qc].
  • [21] B. P. Abbott et al. “GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4M ”. In: Astrophys. J. Lett. 892.1 (2020), p. L3. doi: 10.3847/2041-8213/ ab75f5. arXiv: 2001.01761 [astro-ph.HE].
  • [22] B. P. Abbott et al. “Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A”. In: Astrophys. J. Lett. 848.2 (2017), p. L13. doi: 10.3847/2041-8213/aa920c. arXiv: 1710.05834 [astro-ph.HE].
  • [23] Rosa Poggiani. “Multi-messenger Observations of a Binary Neutron Star Merger”. In: PoS FRAPWS2018 (2019), p. 013. doi: 10.22323/1.331.0013.
  • [24] David W. Hogg. “Distance measures in cosmology”. In: (May 1999). arXiv: astro- ph/ 9905116.
  • [25] N. Aghanim et al. “Planck 2018 Results. VI. Cosmological Parameters”. In: Astron. Astrophys. 641 (2020), A6. doi: 10.1051/0004-6361/201833910. arXiv: 1807.06209 [astro-ph.CO].
  • [26] Adam G. Riess, William H. Press, and Robert P. Kirshner. “Using SN-Ia light curve shapes to measure the Hubble constant”. In: Astrophys. J. Lett. 438 (1995), pp. L17–20. doi: 10. 1086/187704. arXiv: astro-ph/9410054.
  • [27] Adam G. Riess et al. “Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM”. In: Astrophys. J. Lett. 908.1 (2021), p. L6. doi: 10.3847/2041-8213/abdbaf. arXiv: 2012.08534 [astro-ph.CO].
  • [28] L. Verde, T. Treu, and A. G. Riess. “Tensions between the Early and the Late Universe”. In: Nature Astron. 3 (July 2019), p. 891. doi: 10 . 1038 / s41550 - 019 - 0902 - 0. arXiv: 1907.10625 [astro-ph.CO].
  • [29] Chiara Caprini and Daniel G. Figueroa. “Cosmological Backgrounds of Gravitational Waves”. In: Class. Quant. Grav. 35.16 (2018), p. 163001. doi: 10.1088/1361-6382/aac608. arXiv: 1801.04268 [astro-ph.CO]. BIBLIOGRAPHY 265
  • [30] B.P. Abbott et al. “An Upper Limit on the Stochastic Gravitational-Wave Background of Cosmological Origin”. In: Nature 460 (2009), p. 990. doi: 10.1038/nature08278. arXiv: 0910.5772 [astro-ph.CO].
  • [31] Benjamin P. Abbott et al. “Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run”. In: Phys. Rev. Lett. 118.12 (2017), p. 121101. doi: 10.1103/PhysRevLett.118.121101, 10.1103/PhysRevLett.119.029901. arXiv: 1612.02029 [gr-qc].
  • [31] Benjamin P. Abbott et al. “Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run”. In: Phys. Rev. Lett. 118.12 (2017), p. 121101. doi: 10.1103/PhysRevLett.118.121101, 10.1103/PhysRevLett.119.029901. arXiv: 1612.02029 [gr-qc].
  • [32] B.P. Abbott et al. “Search for the Isotropic Stochastic Background Using Data from Advanced LIGO’s Second Observing Run”. In: Phys. Rev. D 100.LIGO-P1800248 (2019), p. 061101. doi: 10.1103/PhysRevD.100.061101. arXiv: 1903.02886 [gr-qc].
  • [33] R. Abbott et al. “Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO’s and Advanced Virgo’s Third Observing Run”. In: (Jan. 2021). arXiv: 2101.12130 [gr-qc].
  • [34] Z. Arzoumanian et al. “The NANOGrav 11-Year Data Set: Pulsar-Timing Constraints on the Stochastic Gravitational-Wave Background”. In: Astrophys. J. 859.1 (2018), p. 47. doi: 10.3847/1538-4357/aabd3b. arXiv: 1801.02617 [astro-ph.HE].
  • [35] Chiara Caprini et al. “Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA”. In: JCAP 11.LISA-CosWG-19-02 (2019), p. 017. doi: 10.1088/ 1475-7516/2019/11/017. arXiv: 1906.09244 [astro-ph.CO].
  • [36] Zaven Arzoumanian et al. “The NANOGrav 12.5 Yr Data Set: Search for an Isotropic Stochastic Gravitational-Wave Background”. In: Astrophys. J. Lett. 905.2 (2020), p. L34. doi: 10.3847/2041-8213/abd401. arXiv: 2009.04496 [astro-ph.HE].
  • [37] Simone Blasi, Vedran Brdar, and Kai Schmitz. “Has NANOGrav Found First Evidence for Cosmic Strings?” In: Phys. Rev. Lett. 126.CERN-TH-2020-151 (2021), p. 041305. doi: 10.1103/PhysRevLett.126.041305. arXiv: 2009.06607 [astro-ph.CO].
  • [38] John Ellis and Marek Lewicki. “Cosmic String Interpretation of NANOGrav Pulsar Timing Data”. In: Phys. Rev. Lett. 126.KCL-PH-TH/2020-53, CERN-TH-2020-150 (2021), p. 041304. doi: 10.1103/PhysRevLett.126.041304. arXiv: 2009.06555 [astro-ph.CO].
  • [39] Ville Vaskonen and Hardi Veerm¨ ae. “Did NANOGrav see a signal from primordial black hole formation?” In: Phys. Rev. Lett. 126.5 (2021), p. 051303. doi: 10.1103/PhysRevLett.126. 051303. arXiv: 2009.07832 [astro-ph.CO].
  • [40] V. De Luca, G. Franciolini, and A. Riotto. “NANOGrav Data Hints at Primordial Black Holes as Dark Matter”. In: Phys. Rev. Lett. 126.4 (2021), p. 041303. doi: 10 . 1103 / PhysRevLett.126.041303. arXiv: 2009.08268 [astro-ph.CO].
  • [41] Yuichiro Nakai et al. “Gravitational Waves and Dark Radiation from Dark Phase Transition: Connecting NANOGrav Pulsar Timing Data and Hubble Tension”. In: Phys. Lett. B 816 (2021), p. 136238. doi: 10.1016/j.physletb.2021.136238. arXiv: 2009.09754 [astro-ph.CO].
  • [42] Andrea Addazi et al. “NANOGrav results and Dark First Order Phase Transitions”. In: (Sept. 2020). arXiv: 2009.10327 [hep-ph]. 266 BIBLIOGRAPHY
  • [43] Wilfried Buchmuller, Valerie Domcke, and Kai Schmitz. “From NANOGrav to LIGO with Metastable Cosmic Strings”. In: Phys. Lett. B 811.CERN-TH-2020-157, DESY 20-154, DESY20-154 (2020), p. 135914. doi: 10.1016/j.physletb.2020.135914. arXiv: 2009.10649 [astro-ph.CO].
  • [44] Kazunori Kohri and Takahiro Terada. “Solar-Mass Primordial Black Holes Explain NANOGrav Hint of Gravitational Waves”. In: Phys. Lett. B 813 (2021), p. 136040. doi: 10.1016/j. physletb.2020.136040. arXiv: 2009.11853 [astro-ph.CO].
  • [45] Jose Mar´ ıa Ezquiaga and Daniel E. Holz. “Jumping the Gap: Searching for LIGO’s Biggest Black Holes”. In: Astrophys. J. Lett. 909.2 (2021), p. L23. doi: 10.3847/2041-8213/abe638. arXiv: 2006.02211 [astro-ph.HE].
  • [46] B. P. Abbott et al. “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA”. In: Living Rev. Rel. 23.1 (2020), p. 3. doi: 10.1007/s41114-020-00026-9.
  • [47] Gemma Janssen et al. “Gravitational Wave Astronomy with the SKA”. In: Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14): Giardini Naxos, Italy, June 9-13, 2014. Vol. AASKA14. PoS. 2015, p. 037. doi: 10.22323/1.215.0037. arXiv: 1501.00127 [astro-ph.IM].
  • [48] Pierre Binetruy et al. “Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources”. In: JCAP 1206 (2012), p. 027. doi: 10.1088/1475-7516/2012/06/027. arXiv: 1201.0983 [gr-qc].
  • [49] Pau Amaro-Seoane et al. “eLISA/NGO: Astrophysics and Cosmology in the GravitationalWave Millihertz Regime”. In: GW Notes 6 (2013), pp. 4–110. arXiv: 1201.3621 [astro-ph.CO].
  • [50] Michele Maggiore et al. “Science Case for the Einstein Telescope”. In: JCAP 03 (2020), p. 050. doi: 10.1088/1475-7516/2020/03/050. arXiv: 1912.02622 [astro-ph.CO].
  • [51] David Reitze et al. “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO”. In: Bull. Am. Astron. Soc. 51.7 (2019), p. 035. arXiv: 1907.04833 [astro-ph.IM].
  • [52] Pierre Auclair et al. “Cosmic String Loop Production Functions”. In: JCAP 06.KCL-PHTH/2019-19 (2019), p. 015. doi: 10.1088/1475-7516/2019/06/015. arXiv: 1903.06685 [astro-ph.CO].
  • [53] Pierre Auclair, Dani` ele A. Steer, and Tanmay Vachaspati. “Particle Emission and Gravitational Radiation from Cosmic Strings: Observational Constraints”. In: Phys. Rev. D 101.8 (2020), p. 083511. doi: 10.1103/PhysRevD.101.083511. arXiv: 1911.12066 [hep-ph].
  • [54] Pierre Auclair et al. “Probing the Gravitational Wave Background from Cosmic Strings with LISA”. In: JCAP 04 (2020), p. 034. doi: 10.1088/1475-7516/2020/04/034. arXiv: 1909.00819 [astro-ph.CO].
  • [55] Manuel Arca Sedda et al. “The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range”. In: Class. Quant. Grav. 37.21 (2020), p. 215011. doi: 10. 1088/1361-6382/abb5c1. arXiv: 1908.11375 [gr-qc].
  • [56] Pierre G. Auclair. “Impact of the Small-Scale Structure on the Stochastic Background of Gravitational Waves from Cosmic Strings”. In: JCAP 11 (2020), p. 050. doi: 10.1088/14757516/2020/11/050. arXiv: 2009.00334 [astro-ph.CO]. BIBLIOGRAPHY 267
  • [57] Pierre Auclair and Vincent Vennin. “Primordial black holes from metric preheating: mass fraction in the excursion-set approach”. In: JCAP 02 (2021), p. 038. doi: 10.1088/14757516/2021/02/038. arXiv: 2011.05633 [astro-ph.CO].
  • [58] Pierre Auclair et al. “Irreducible cosmic production of relic vortons”. In: JCAP 03 (2021), p. 098. doi: 10.1088/1475-7516/2021/03/098. arXiv: 2010.04620 [astro-ph.CO].
  • [59] R. Abbott et al. “Constraints on cosmic strings using data from the third Advanced LIGOVirgo observing run”. In: (Jan. 2021). arXiv: 2101.12248 [gr-qc].
  • [60] H.B. Nielsen and P. Olesen. “Vortex-Line Models for Dual Strings”. English. In: Nuclear Physics B 61 (Sept. 1973), pp. 45–61. issn: 05503213. doi: 10.1016/0550-3213(73)903507.
  • [61] T.W.B. Kibble. “Topology of Cosmic Domains and Strings”. In: J. Phys. A 9.ICTP/75/5 (1976), pp. 1387–1398. doi: 10.1088/0305-4470/9/8/029.
  • [62] Rachel Jeannerot, Jonathan Rocher, and Mairi Sakellariadou. “How Generic Is Cosmic String Formation in Supersymmetric Grand Unified Theories”. In: Phys. Rev. D68.10, 103514 (Nov. 2003), p. 103514. doi: 10.1103/PhysRevD.68.103514. arXiv: hep-ph/0308134.
  • [63] T.W.B. Kibble. “Evolution of a System of Cosmic Strings”. en. In: Nuclear Physics B 252 (Jan. 1985), pp. 227–244. issn: 05503213. doi: 10.1016/0550-3213(85)90439-0.
  • [64] A. Vilenkin and E.P. S. Shellard. Cosmic Strings and Other Topological Defects. Cambridge University Press, July 2000. isbn: 978-0-521-65476-0.
  • [65] E. P. S. Shellard. “Cosmic String Interactions”. In: Nucl. Phys. B283 (1987), pp. 624–656. doi: 10.1016/0550-3213(87)90290-2.
  • [66] G. J. Verbiest and A. Achucarro. “High Speed Collision and Reconnection of Abelian Higgs Strings in the Deep Type-II Regime”. In: Phys. Rev. D84 (2011), p. 105036. doi: 10.1103/ PhysRevD.84.105036. arXiv: 1106.4666 [hep-th].
  • [67] P. Salmi et al. “Kinematic Constraints on Formation of Bound States of Cosmic Strings: Field Theoretical Approach”. In: Phys. Rev. D77.IMPERIAL-TP-07-TK-01 (2008), p. 041701. doi: 10.1103/PhysRevD.77.041701. arXiv: 0712.1204 [hep-th].
  • [68] Neil Bevis et al. “Evolution and Stability of Cosmic String Loops with Y-Junctions”. In: Phys. Rev. D80 (2009), p. 125030. doi: 10.1103/PhysRevD.80.125030. arXiv: 0904.2127 [hep-th].
  • [69] M. B. Hindmarsh and T. W. B. Kibble. “Cosmic Strings”. In: Rept. Prog. Phys. 58.SUSXTP-94-74, IMPERIAL-TP-94-95-5, NI-94025 (1995), pp. 477–562. doi: 10.1088/00344885/58/5/001. arXiv: hep-ph/9411342.
  • [70] Gia Dvali and Alexander Vilenkin. “Formation and Evolution of Cosmic D-Strings”. In: JCAP 0403 (2004), p. 010. doi: 10.1088/1475- 7516/2004/03/010. arXiv: hep- th/ 0312007.
  • [71] Edmund J. Copeland, Robert C. Myers, and Joseph Polchinski. “Cosmic f and d Strings”. In: JHEP 06 (2004), p. 013. doi: 10.1088/1126-6708/2004/06/013. arXiv: hep-th/0312067.
  • [72] P. A. R. Ade et al. “Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects”. In: Astron. Astrophys. 571.CERN-PH-TH-2013-138 (2014), A25. doi: 10.1051/0004-6361/201321621. arXiv: 1303.5085 [astro-ph.CO]. 268 BIBLIOGRAPHY
  • [73] Tom Charnock et al. “CMB Constraints on Cosmic Strings and Superstrings”. In: Phys. Rev. D93.12 (2016), p. 123503. doi: 10.1103/PhysRevD.93.123503. arXiv: 1603.01275 [astro-ph.CO].
  • [74] Joanes Lizarraga et al. “New CMB Constraints for Abelian Higgs Cosmic Strings”. In: JCAP 10 (2016), p. 042. doi: 10.1088/1475- 7516/2016/10/042. arXiv: 1609.03386 [astro-ph.CO].
  • [75] Christophe Ringeval. “Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background”. In: Adv. Astron. 2010 (2010), p. 380507. doi: 10.1155/2010/ 380507. arXiv: 1005.4842 [astro-ph.CO].
  • [76] Alexander Vilenkin. “Cosmic Strings as Gravitational Lenses”. In: Astrophys. J. 282.TUTP84-3 (1984), pp. L51–L53. doi: 10.1086/184303.
  • [77] Jolyon K. Bloomfield and David F. Chernoff. “Cosmic String Loop Microlensing”. In: Phys. Rev. D89.12 (2014), p. 124003. doi: 10.1103/PhysRevD.89.124003. arXiv: 1311.7132 [astro-ph.CO].
  • [78] Robert H. Brandenberger. “On the Decay of Cosmic String Loops”. In: Nucl. Phys. B293.PRINT86-1356 (CAMBRIDGE) (1987), pp. 812–828. doi: 10.1016/0550-3213(87)90092-7.
  • [79] Mark Srednicki and Stefan Theisen. “Nongravitational Decay of Cosmic Strings”. In: Phys. Lett. B189.PRINT-86-0978-REV.(UC,SANTA-BARBARA), PRINT-86-0978 (UC,SANTABARBARA) (1987), p. 397. doi: 10.1016/0370-2693(87)90648-4.
  • [80] Pijushpani Bhattacharjee, Christopher T. Hill, and David N. Schramm. “Grand Unified Theories, Topological Defects and Ultrahigh-Energy Cosmic Rays”. In: Phys. Rev. Lett. 69.FERMILAB-PUB-91-304-A (1992), pp. 567–570. doi: 10.1103/PhysRevLett.69.567.
  • [81] Thibault Damour and Alexander Vilenkin. “Cosmic Strings and the String Dilaton”. In: Phys. Rev. Lett. 78 (1997), pp. 2288–2291. doi: 10.1103/PhysRevLett.78.2288. arXiv: gr-qc/9610005.
  • [82] U. F. Wichoski, Jane H. MacGibbon, and Robert H. Brandenberger. “High-Energy Neutrinos, Photons and Cosmic Ray Fluxes from VHS Cosmic Strings”. In: Phys. Rev. D65.BROWNHET-1115 (2002), p. 063005. doi: 10.1103/PhysRevD.65.063005. arXiv: hep-ph/9805419.
  • [83] Marco Peloso and Lorenzo Sorbo. “Moduli from Cosmic Strings”. In: Nucl. Phys. B649 (2003), pp. 88–100. doi: 10.1016/S0550-3213(02)01020-9. arXiv: hep-ph/0205063.
  • [84] Eray Sabancilar. “Cosmological Constraints on Strongly Coupled Moduli from Cosmic Strings”. In: Phys. Rev. D81 (2010), p. 123502. doi: 10.1103/PhysRevD.81.123502. arXiv: 0910.5544 [hep-ph].
  • [85] Tanmay Vachaspati. “Cosmic Rays from Cosmic Strings with Condensates”. In: Phys. Rev. D81 (2010), p. 043531. doi: 10.1103/PhysRevD.81.043531. arXiv: 0911.2655 [astro-ph.CO].
  • [86] Andrew J. Long, Jeffrey M. Hyde, and Tanmay Vachaspati. “Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles”. In: JCAP 1409.09 (2014), p. 030. doi: 10.1088/1475-7516/2014/09/030. arXiv: 1405.7679 [hep-ph].
  • [87] Mairi Sakellariadou. “Cosmic Strings”. In: Proceedings, International Workshop on Quantum Simulations via Analogues: Dresden, Germany, July 25-28, 2005. Vol. 718. Lecture Notes in Physics. 2007, pp. 247–288. doi: 10.1007/3-540-70859-610. arXiv: hep-th/0602276. BIBLIOGRAPHY 269
  • [88] Tanmay Vachaspati, Levon Pogosian, and Daniele Steer. “Cosmic Strings”. In: Scholarpedia 10.2 (2015), p. 31682. doi: 10 . 4249 / scholarpedia . 31682. arXiv: 1506 . 04039 [astro-ph.CO].
  • [89] Jose J. Blanco-Pillado, Ken D. Olum, and Xavier Siemens. “New Limits on Cosmic Strings from Gravitational Wave Observation”. In: Phys. Lett. B778 (2018), pp. 392–396. doi: 10. 1016/j.physletb.2018.01.050. arXiv: 1709.02434 [astro-ph.CO].
  • [90] Christophe Ringeval and Teruaki Suyama. “Stochastic Gravitational Waves from Cosmic String Loops in Scaling”. In: JCAP 12 (2017), p. 027. doi: 10.1088/1475-7516/2017/12/ 027. arXiv: 1709.03845 [astro-ph.CO].
  • [91] B. P. Abbott et al. “Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run”. In: Phys. Rev. D97.10 (2018), p. 102002. doi: 10.1103/PhysRevD. 97.102002. arXiv: 1712.01168 [gr-qc].
  • [92] A. Vilenkin. “Gravitational Radiation from Cosmic Strings”. In: Phys. Lett. 107B (1981), pp. 47–50. doi: 10.1016/0370-2693(81)91144-8.
  • [93] Andreas Albrecht and Neil Turok. “Evolution of Cosmic String Networks”. In: Phys. Rev. D40.PUPT-89-1119, FERMILAB-PUB-89-042-A, FERMILAB-PUB-89-046-A (1989), pp. 973– 1001. doi: 10.1103/PhysRevD.40.973.
  • [94] Daren Austin, E. J. Copeland, and T. W. B. Kibble. “Evolution of Cosmic String Configurations”. English. In: Physical Review D 48.SUSSEX-TH-93-3-4, IMPERIAL-TP-92-93-42, NSF-ITP-93-83 (Dec. 1993), pp. 5594–5627. issn: 0556-2821. doi: 10.1103/PhysRevD.48. 5594. arXiv: hep-ph/9307325.
  • [95] Jose J. Blanco-Pillado, Ken D. Olum, and Benjamin Shlaer. “Large Parallel Cosmic String Simulations: New Results on Loop Production”. English. In: Physical Review D 83.8 (Apr. 2011). issn: 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.83.083514. arXiv: 1101.5173 [astro-ph.CO].
  • [96] Edmund J. Copeland, T.W.B. Kibble, and Daniele A. Steer. “The Evolution of a Network of Cosmic String Loops”. In: Phys. Rev. D 58.SUSX-TH-98-005, IMPERIAL-TP-97-98-31, DAMTP-97-152 (1998), p. 043508. doi: 10.1103/PhysRevD.58.043508. arXiv: hep-ph/ 9803414.
  • [97] C. J. A. P. Martins and E. P. S. Shellard. “Quantitative String Evolution”. In: Phys. Rev. D54.DAMTP-R-96-5 (1996), pp. 2535–2556. doi: 10 . 1103 / PhysRevD . 54 . 2535. arXiv: hep-ph/9602271.
  • [98] C. J. A. P. Martins and E. P. S. Shellard. “Extending the Velocity-Dependent One-Scale String Evolution Model”. In: Phys. Rev. D65 (2002), p. 043514. doi: 10.1103/PhysRevD. 65.043514. arXiv: hep-ph/0003298.
  • [99] Christophe Ringeval, Mairi Sakellariadou, and Francois Bouchet. “Cosmological Evolution of Cosmic String Loops”. In: JCAP 0702 (2007), p. 023. doi: 10.1088/1475-7516/2007/ 02/023. arXiv: astro-ph/0511646.
  • [100] Vitaly Vanchurin, Ken D. Olum, and Alexander Vilenkin. “Scaling of Cosmic String Loops”. In: Phys. Rev. D 74.6 (Sept. 2006), p. 063527. issn: 1550-7998, 1550-2368. doi: 10.1103/ PhysRevD.74.063527. arXiv: gr-qc/0511159. 270 BIBLIOGRAPHY
  • [101] B. Allen and E. P. S. Shellard. “Cosmic-String Evolution: A Numerical Simulation”. English. In: Phys. Rev. Lett. 64.2 (Jan. 1990), pp. 119–122. issn: 0031-9007. doi: 10.1103/ PhysRevLett.64.119.
  • [102] David P. Bennett and Francois R. Bouchet. “High Resolution Simulations of Cosmic String Evolution. 1. Network Evolution”. In: Phys. Rev. D41.PUPT-89-1137, UCRL-102446 (1990), p. 2408. doi: 10.1103/PhysRevD.41.2408.
  • [103] Jose J. Blanco-Pillado, Ken D. Olum, and Benjamin Shlaer. “The Number of Cosmic String Loops”. In: Phys. Rev. D89.2 (2014), p. 023512. doi: 10.1103/PhysRevD.89.023512. arXiv: 1309.6637 [astro-ph.CO].
  • [104] Neil Turok. “Grand Unified Strings and Galaxy Formation”. In: Nucl. Phys. B242.UCSBTH-3-1984 (1984), pp. 520–541. doi: 10.1016/0550-3213(84)90407-3.
  • [105] Thibault Damour and Alexander Vilenkin. “Gravitational Wave Bursts from Cosmic Strings”. In: Phys.Rev.Lett. 85.IHES-P-00-32 (2000), pp. 3761–3764. doi: 10.1103/PhysRevLett.85. 3761. arXiv: gr-qc/0004075.
  • [106] Thibault Damour and Alexander Vilenkin. “Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings”. In: Phys. Rev. D 64.IHES-P-01-15 (2001), p. 064008. doi: 10. 1103/PhysRevD.64.064008. arXiv: gr-qc/0104026.
  • [107] J. Aasi et al. “Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors”. In: Phys. Rev. Lett. 112 (2014), p. 131101. doi: 10.1103/PhysRevLett.112. 131101. arXiv: 1310.2384 [gr-qc].
  • [108] P. Binetruy et al. “Gravitational Wave Bursts from Cosmic Superstrings with Y-Junctions”. In: Phys. Rev. D 80 (2009), p. 123510. doi: 10.1103/PhysRevD.80.123510. arXiv: 0907. 4522 [hep-th].
  • [109] C. J. A. P. Martins and E. P. S. Shellard. “Fractal Properties and Small-Scale Structure of Cosmic String Networks”. In: Phys. Rev. D73 (2006), p. 043515. doi: 10.1103/PhysRevD. 73.043515. arXiv: astro-ph/0511792.
  • [110] Graham Vincent, Nuno D. Antunes, and Mark Hindmarsh. “Numerical Simulations of String Networks in the Abelian Higgs Model”. In: Phys. Rev. Lett. 80.SUSX-TH-97-015 (1998), pp. 2277–2280. doi: 10.1103/PhysRevLett.80.2277. arXiv: hep-ph/9708427.
  • [111] J. N. Moore, E. P. S. Shellard, and C. J. A. P Martins. “Evolution of Abelian-Higgs String Networks”. In: Phys. Rev. D65.2 (Jan. 2001), p. 023503. eprint: hep-ph/0107171.
  • [112] Mark Hindmarsh, Stephanie Stuckey, and Neil Bevis. “Abelian Higgs Cosmic Strings: Small Scale Structure and Loops”. In: Phys. Rev. D79.IMPERIAL-TP-08-NB-03 (2009), p. 123504. doi: 10.1103/PhysRevD.79.123504. arXiv: 0812.1929 [hep-th].
  • [113] Mark Hindmarsh et al. “Scaling from Gauge and Scalar Radiation in Abelian Higgs String Networks”. In: Phys. Rev. D96.2 (2017), p. 023525. doi: 10.1103/PhysRevD.96.023525. arXiv: 1703.06696 [astro-ph.CO].
  • [114] Jose J. Blanco-Pillado and Ken D. Olum. “Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops”. In: Phys. Rev. D 96.10 (2017), p. 104046. doi: 10.1103/ PhysRevD.96.104046. arXiv: 1709.02693 [astro-ph.CO].
  • [115] Jean M. Quashnock and David N. Spergel. “Gravitational Selfinteractions of Cosmic Strings”. In: Phys. Rev. D42.POP-354 (1990), pp. 2505–2520. doi: 10.1103/PhysRevD.42.2505. BIBLIOGRAPHY 271
  • [116] Thomas Helfer, Josu C. Aurrekoetxea, and Eugene A. Lim. “Cosmic String Loop Collapse in Full General Relativity”. In: Phys. Rev. D99.KCL-PH-TH/2018-44 (2019), p. 104028. doi: 10.1103/PhysRevD.99.104028. arXiv: 1808.06678 [gr-qc].
  • [117] Tanmay Vachaspati and Alexander Vilenkin. “Gravitational Radiation from Cosmic Strings”. en. In: Physical Review D 31.HUTP-84/A065 (June 1985), pp. 3052–3058. issn: 0556-2821. doi: 10.1103/PhysRevD.31.3052.
  • [118] Bruce Allen and E.P.S. Shellard. “Gravitational Radiation from Cosmic Strings”. In: Phys. Rev. D 45.WISC-MILW-91-TH-12 (1992), pp. 1898–1912. doi: 10.1103/PhysRevD.45.1898.
  • [119] Jeremy M. Wachter and Ken D. Olum. “Gravitational Backreaction on Piecewise Linear Cosmic String Loops”. In: Phys. Rev. D95.2 (2017), p. 023519. doi: 10.1103/PhysRevD. 95.023519. arXiv: 1609.01685 [gr-qc].
  • [120] Jose J. Blanco-Pillado, Ken D. Olum, and Jeremy M. Wachter. “Gravitational Back-Reaction near Cosmic String Kinks and Cusps”. In: Phys. Rev. D 98.12 (Dec. 2018), p. 123507. issn: 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.98.123507. arXiv: 1808.08254.
  • [121] David F. Chernoff, Eanna E. Flanagan, and Barry Wardell. “Gravitational Backreaction on a Cosmic String: Formalism”. In: Phys. Rev. D99.8 (2019), p. 084036. doi: 10.1103/ PhysRevD.99.084036. arXiv: 1808.08631 [gr-qc].
  • [122] Jorge V. Rocha. “Scaling Solution for Small Cosmic String Loops”. In: Phys. Rev. Lett. 100 (2008), p. 071601. doi: 10.1103/PhysRevLett.100.071601. arXiv: 0709.3284 [gr-qc].
  • [123] Larissa Lorenz, Christophe Ringeval, and Mairi Sakellariadou. “Cosmic String Loop Distribution on All Length Scales and at Any Redshift”. In: JCAP 10 (2010), p. 003. doi: 10.1088/1475-7516/2010/10/003. arXiv: 1006.0931 [astro-ph.CO].
  • [124] Vitaly Vanchurin. “Towards a Kinetic Theory of Strings”. In: Phys.Rev. D83 (2011), p. 103525. doi: 10.1103/PhysRevD.83.103525. arXiv: 1103.1593 [hep-th].
  • [125] Patrick Peter and Christophe Ringeval. “A Boltzmann Treatment for the Vorton Excess Problem”. In: JCAP 05 (2013), p. 005. doi: 10.1088/1475-7516/2013/05/005. arXiv: 1302.0953 [astro-ph.CO].
  • [126] Vitaly Vanchurin. “Kinetic Theory and Hydrodynamics of Cosmic Strings”. In: Phys. Rev. D 87.6 (2013). [Erratum: Phys.Rev.D 87, 069910 (2013)], p. 063508. doi: 10.1103/PhysRevD. 87.063508. arXiv: 1301.1973 [hep-th].
  • [127] Daniel Schubring and Vitaly Vanchurin. “Transport Equation for Nambu-Goto Strings”. In: Phys. Rev. D 89.8 (2014), p. 083530. doi: 10.1103/PhysRevD.89.083530. arXiv: 1310.6763 [hep-th].
  • [128] R. R. Caldwell and Bruce Allen. “Cosmological Constraints on Cosmic String Gravitational Radiation”. In: Phys. Rev. D45.WISC-MILW-91-TH-14 (1992), pp. 3447–3468. doi: 10. 1103/PhysRevD.45.3447.
  • [129] Matthew R. DePies and Craig J. Hogan. “Stochastic Gravitational Wave Background from Light Cosmic Strings”. In: Phys. Rev. D75 (2007), p. 125006. doi: 10.1103/PhysRevD.75. 125006. arXiv: astro-ph/0702335.
  • [130] Tania Regimbau et al. “The Stochastic Background from Cosmic (Super)Strings: Popcorn and (Gaussian) Continuous Regimes”. In: Phys. Rev. D85 (2012), p. 066001. doi: 10.1103/ PhysRevD.85.066001,10.1103/PhysRevD.85.069902. arXiv: 1111.6638 [astro-ph.CO]. 272 BIBLIOGRAPHY
  • [131] Sachiko Kuroyanagi et al. “Forecast Constraints on Cosmic String Parameters from Gravitational Wave Direct Detection Experiments”. In: Phys. Rev. D86 (2012), p. 023503. doi: 10.1103/PhysRevD.86.023503. arXiv: 1202.3032 [astro-ph.CO].
  • [132] Sophie Henrot-Versille et al. “Improved Constraint on the Primordial Gravitational-Wave Density Using Recent Cosmological Data and Its Impact on Cosmic String Models”. In: Class. Quant. Grav. 32.4 (2015), p. 045003. doi: 10.1088/0264-9381/32/4/045003. arXiv: 1408.5299 [astro-ph.CO].
  • [133] L. Sousa and P. P. Avelino. “Probing Cosmic Superstrings with Gravitational Waves”. In: Phys. Rev. D94.6 (2016), p. 063529. doi: 10.1103/PhysRevD.94.063529. arXiv: 1606.05585 [astro-ph.CO].
  • [134] D. P. Bennett and F. R. Bouchet. “Cosmic-String Evolution”. In: Phys. Rev. Lett. 63 (Dec. 1989), pp. 2776–2779.
  • [135] M. Sakellariadou and A. Vilenkin. “Cosmic-String Evolution in Flat Space-Time”. In: Phys. Rev. D 42 (1990), pp. 349–353. doi: 10.1103/PhysRevD.42.349.
  • [136] E. J. Copeland and T. W. B. Kibble. “Kinks and Small-Scale Structure on Cosmic Strings”. In: Phys. Rev. D80.IMPERIAL-TP-09-TK-02 (2009), p. 123523. doi: 10.1103/PhysRevD. 80.123523. arXiv: 0909.1960 [astro-ph.CO].
  • [137] Joseph Polchinski and Jorge V. Rocha. “Analytic Study of Small Scale Structure on Cosmic Strings”. In: Phys. Rev. D74 (2006), p. 083504. arXiv: hep-ph/0606205.
  • [138] Florian Dubath, Joseph Polchinski, and Jorge V. Rocha. “Cosmic String Loops, Large and Small”. In: Phys. Rev. D77 (2008), p. 123528. doi: 10.1103/PhysRevD.77.123528. arXiv: 0711.0994 [astro-ph].
  • [139] Daiju Matsunami et al. “Decay of Cosmic String Loops Due to Particle Radiation”. In: Phys. Rev. Lett. 122.20 (2019), p. 201301. doi: 10.1103/PhysRevLett.122.201301. arXiv: 1903.05102 [hep-ph].
  • [140] J. J. Blanco-Pillado and Ken D. Olum. “The Form of Cosmic String Cusps”. In: Phys. Rev. D59 (1999), p. 063508. doi: 10.1103/PhysRevD.59.063508. arXiv: gr-qc/9810005.
  • [141] Ken D. Olum and J. J. Blanco-Pillado. “Field Theory Simulation of Abelian Higgs Cosmic String Cusps”. In: Phys. Rev. D60 (1999), p. 023503. doi: 10.1103/PhysRevD.60.023503. arXiv: gr-qc/9812040.
  • [142] Mark Hindmarsh et al. “Loop decay in Abelian-Higgs string networks”. In: (Mar. 2021). arXiv: 2103.16248 [astro-ph.CO].
  • [143] Edward Witten. “Cosmic Superstrings”. In: Phys. Lett. B 153.PRINT-85-0204 (PRINCETON) (1985), pp. 243–246. doi: 10.1016/0370-2693(85)90540-4.
  • [144] George Lazarides, C. Panagiotakopoulos, and Q. Shafi. “Superheavy Superconducting Cosmic Strings from Superstring Models”. In: Phys. Lett. B 183.NUB-2707 (1987), pp. 289–295. doi: 10.1016/0370-2693(87)90966-X.
  • [145] Brandon Carter. “Dilatonic formulation for conducting cosmic string models”. In: Annalen Phys. 9 (2000). Ed. by G. Neugebauer and R. Collier, pp. 247–257. doi: 10.1002/(SICI) 1521-3889(200005)9:3/5<247::AID-ANDP247>3.0.CO;2-5. arXiv: hep-th/0002162.
  • [145] Brandon Carter. “Dilatonic formulation for conducting cosmic string models”. In: Annalen Phys. 9 (2000). Ed. by G. Neugebauer and R. Collier, pp. 247–257. doi: 10.1002/(SICI) 1521-3889(200005)9:3/5<247::AID-ANDP247>3.0.CO;2-5. arXiv: hep-th/0002162.
  • [146] Brandon Carter. “Essentials of Classical Brane Dynamics”. In: Int. J. Theor. Phys. 40 (2001), pp. 2099–2130. doi: 10.1023/A:1012934901706. arXiv: gr-qc/0012036. BIBLIOGRAPHY 273
  • [147] R.L. Davis and E.P.S. Shellard. “Cosmic Vortons”. In: Nucl.Phys. B323.NSF-ITP-88-167 (1989), pp. 209–224. doi: 10.1016/0550-3213(89)90594-4.
  • [148] B. Carter. “Cosmic Rings as a Chump Dark Matter Candidate?” In: 10th Moriond Astrophysics Meeting: The Early Phases of the Universe. 1990, pp. 213–221.
  • [149] Robert H. Brandenberger et al. “Cosmic Vortons and Particle Physics Constraints”. In: Phys. Rev. D 54.BROWN-HET-1036, DAMTP-96-16, MIT-CTP-2515, OBSPM-96014 (1996), pp. 6059– 6071. doi: 10.1103/PhysRevD.54.6059. arXiv: hep-ph/9605382.
  • [150] C.J.A.P. Martins and E.P.S. Shellard. “Vorton Formation”. In: Phys. Rev. D 57.DAMTPR-97-30 (1998), pp. 7155–7176. doi: 10.1103/PhysRevD.57.7155. arXiv: hep-ph/9804378.
  • [151] C.J.A.P. Martins and E.P.S. Shellard. “Limits on Cosmic Chiral Vortons”. In: Phys. Lett. B 445.DAMTP-98-58, DAMTP-1998-58 (1998), pp. 43–51. doi: 10.1016/S0370-2693(98) 01466-X. arXiv: hep-ph/9806480.
  • [152] Brandon Carter. “Old and New Processes of Vorton Formation”. In: Lect. Notes Phys. 541 (2000). Ed. by J. Kowalski-Glikman, pp. 71–78. arXiv: hep-ph/9909513.
  • [153] A. C. Davis et al. “Dynamics and Properties of Chiral Cosmic Strings in Minkowski Space”. In: Phys. Rev. D 62.DAMTP-2000-46, IMPERIAL-TP-99-00-27 (2000), p. 083516. doi: 10. 1103/PhysRevD.62.083516. arXiv: astro-ph/0005514.
  • [154] Daniele A. Steer. “Selfintersections and Gravitational Properties of Chiral Cosmic Strings in Minkowski Space”. In: Phys. Rev. D 63 (2001), p. 083517. doi: 10.1103/PhysRevD.63. 083517. arXiv: astro-ph/0011233.
  • [155] Y. Lemperiere and E.P.S. Shellard. “Vorton Existence and Stability”. In: Phys. Rev. Lett. 91 (2003), p. 141601. doi: 10.1103/PhysRevLett.91.141601. arXiv: hep-ph/0305156.
  • [156] Richard A. Battye and Paul M. Sutcliffe. “Vorton Construction and Dynamics”. In: Nucl. Phys. B 814.DCPT-08-69 (2009), pp. 180–194. doi: 10.1016/j.nuclphysb.2009.01.021. arXiv: 0812.3239 [hep-th].
  • [157] Julien Garaud, Eugen Radu, and Mikhail S. Volkov. “Stable Cosmic Vortons”. In: Phys. Rev. Lett. 111 (2013), p. 171602. doi: 10.1103/PhysRevLett.111.171602. arXiv: 1303.3044 [hep-th].
  • [158] B. P. Abbott et al. “GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence”. In: Phys. Rev. Lett. 116.LIGO-P151226 (2016), p. 241103. doi: 10.1103/PhysRevLett.116.241103. arXiv: 1606.04855 [gr-qc].
  • [159] Benjamin P. Abbott et al. “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2”. In: Phys. Rev. Lett. 118.LIGO-P170104 (2017), p. 221101. doi: 10.1103/PhysRevLett.118.221101, 10.1103/PhysRevLett.121.129901. arXiv: 1706.01812 [gr-qc].
  • [159] Benjamin P. Abbott et al. “GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2”. In: Phys. Rev. Lett. 118.LIGO-P170104 (2017), p. 221101. doi: 10.1103/PhysRevLett.118.221101, 10.1103/PhysRevLett.121.129901. arXiv: 1706.01812 [gr-qc].
  • [160] B.. P.. Abbott et al. “GW170608: Observation of a 19-Solar-Mass Binary Black Hole Coalescence”. In: Astrophys. J. 851.LIGO-DOCUMENT-P170608-V8 (2017), p. L35. doi: 10. 3847/2041-8213/aa9f0c. arXiv: 1711.05578 [astro-ph.HE].
  • [161] B. P. Abbott et al. “GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence”. In: Phys. Rev. Lett. 119.14 (2017), p. 141101. doi: 10.1103/PhysRevLett.119.141101. arXiv: 1709.09660 [gr-qc]. 274 BIBLIOGRAPHY
  • [162] L. P. Grishchuk. “Amplification of Gravitational Waves in an Istropic Universe”. In: Sov. Phys. JETP 40 (1975), pp. 409–415.
  • [163] Alexei A. Starobinsky. “Spectrum of Relict Gravitational Radiation and the Early State of the Universe”. In: JETP Lett. 30 (1979), pp. 682–685.
  • [164] V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin. “Graviton Creation in the Inflationary Universe and the Grand Unification Scale”. In: Phys. Lett. 115B (1982), pp. 189–192. doi: 10.1016/0370-2693(82)90641-4.
  • [165] R. Fabbri and M. d. Pollock. “The Effect of Primordially Produced Gravitons upon the Anisotropy of the Cosmological Microwave Background Radiation”. In: Phys. Lett. 125B (1983), pp. 445–448. doi: 10.1016/0370-2693(83)91322-9.
  • [166] Mohamed M. Anber and Lorenzo Sorbo. “N-Flationary Magnetic Fields”. In: JCAP 0610 (2006), p. 018. doi: 10.1088/1475-7516/2006/10/018. arXiv: astro-ph/0606534.
  • [167] Lorenzo Sorbo. “Parity Violation in the Cosmic Microwave Background from a Pseudoscalar Inflaton”. In: JCAP 1106 (2011), p. 003. doi: 10.1088/1475-7516/2011/06/003. arXiv: 1101.1525 [astro-ph.CO].
  • [168] Enrico Pajer and Marco Peloso. “A Review of Axion Inflation in the Era of Planck”. In: Class. Quant. Grav. 30 (2013), p. 214002. doi: 10.1088/0264-9381/30/21/214002. arXiv: 1305.3557 [hep-th].
  • [169] Peter Adshead, Emil Martinec, and Mark Wyman. “Gauge Fields and Inflation: Chiral Gravitational Waves, Fluctuations, and the Lyth Bound”. In: Phys. Rev. D88.2 (2013), p. 021302. doi: 10.1103/PhysRevD.88.021302. arXiv: 1301.2598 [hep-th].
  • [170] Peter Adshead, Emil Martinec, and Mark Wyman. “Perturbations in Chromo-Natural Inflation”. In: JHEP 09 (2013), p. 087. doi: 10.1007/JHEP09(2013)087. arXiv: 1305.2930 [hep-th].
  • [171] Azadeh Maleknejad. “Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves”. In: JHEP 07 (2016), p. 104. doi: 10.1007/JHEP07(2016)104. arXiv: 1604.03327 [hep-ph].
  • [172] Emanuela Dimastrogiovanni, Matteo Fasiello, and Tomohiro Fujita. “Primordial Gravitational Waves from Axion-Gauge Fields Dynamics”. In: JCAP 1701.01 (2017), p. 019. doi: 10.1088/1475-7516/2017/01/019. arXiv: 1608.04216 [astro-ph.CO].
  • [173] Ryo Namba et al. “Scale-Dependent Gravitational Waves from a Rolling Axion”. In: JCAP 1601.01 (2016), p. 041. doi: 10 . 1088 / 1475 - 7516 / 2016 / 01 / 041. arXiv: 1509 . 07521 [astro-ph.CO].
  • [174] Ricardo Z. Ferreira et al. “On the Validity of the Perturbative Description of Axions during Inflation”. In: JCAP 1604.04 (2016), p. 039. doi: 10.1088/1475-7516/2016/10/E01,10. 1088/1475-7516/2016/04/039. arXiv: 1512.06116 [astro-ph.CO].
  • [175] Marco Peloso, Lorenzo Sorbo, and Caner Unal. “Rolling Axions during Inflation: Perturbativity and Signatures”. In: JCAP 1609.ACFI-T16-16, UMN–TH–3531-16 (2016), p. 001. doi: 10.1088/1475-7516/2016/09/001. arXiv: 1606.00459 [astro-ph.CO].
  • [176] Valerie Domcke, Mauro Pieroni, and Pierre Bin´ etruy. “Primordial Gravitational Waves for Universality Classes of Pseudoscalar Inflation”. In: JCAP 1606 (2016), p. 031. doi: 10. 1088/1475-7516/2016/06/031. arXiv: 1603.01287 [astro-ph.CO]. BIBLIOGRAPHY 275
  • [177] R. R. Caldwell and C. Devulder. “Axion Gauge Field Inflation and Gravitational Leptogenesis: A Lower Bound on b Modes from the Matter-Antimatter Asymmetry of the Universe”. In: Phys. Rev. D97.2 (2018), p. 023532. doi: 10.1103/PhysRevD.97.023532. arXiv: 1706.03765 [astro-ph.CO].
  • [178] Nicola Bartolo et al. “Science with the Space-Based Interferometer LISA. IV: Probing Inflation with Gravitational Waves”. In: JCAP 1612.ACFI-T16-19, UMN-TH-3608-16, CERNTH-2016-222, KCL-PH-TH-2016-58, IFT-UAM-CSIC-16-104 (2016), p. 026. doi: 10.1088/ 1475-7516/2016/12/026. arXiv: 1610.06481 [astro-ph.CO].
  • [179] Massimo Giovannini. “Gravitational Waves Constraints on Postinflationary Phases Stiffer than Radiation”. In: Phys. Rev. D58 (1998), p. 083504. doi: 10.1103/PhysRevD.58.083504. arXiv: hep-ph/9806329.
  • [180] Massimo Giovannini. “Production and Detection of Relic Gravitons in Quintessential Inflationary Models”. In: Phys. Rev. D60.TUPT-01-99 (1999), p. 123511. doi: 10 . 1103 / PhysRevD.60.123511. arXiv: astro-ph/9903004.
  • [181] Latham A. Boyle and Alessandra Buonanno. “Relating Gravitational Wave Constraints from Primordial Nucleosynthesis, Pulsar Timing, Laser Interferometers, and the CMB: Implications for the Early Universe”. In: Phys. Rev. D78 (2008), p. 043531. doi: 10.1103/PhysRevD. 78.043531. arXiv: 0708.2279 [astro-ph].
  • [182] Daniel G. Figueroa and Erwin H. Tanin. “Inconsistency of an Inflationary Sector Coupled Only to Einstein Gravity”. In: JCAP 1910.10 (2019), p. 050. doi: 10.1088/1475-7516/ 2019/10/050. arXiv: 1811.04093 [astro-ph.CO].
  • [183] Daniel G. Figueroa and Erwin H. Tanin. “Ability of LIGO and LISA to Probe the Equation of State of the Early Universe”. In: JCAP 1908 (2019), p. 011. doi: 10.1088/1475-7516/ 2019/08/011. arXiv: 1905.11960 [astro-ph.CO].
  • [184] Richard Easther and Eugene A. Lim. “Stochastic Gravitational Wave Production after Inflation”. In: JCAP 0604 (2006), p. 010. doi: 10.1088/1475-7516/2006/04/010. arXiv: astro-ph/0601617.
  • [185] Juan Garcia-Bellido and Daniel G. Figueroa. “A Stochastic Background of Gravitational Waves from Hybrid Preheating”. In: Phys. Rev. Lett. 98.IFT-UAM-CSIC-06-46 (2007), p. 061302. doi: 10.1103/PhysRevLett.98.061302. arXiv: astro-ph/0701014.
  • [186] Juan Garcia-Bellido, Daniel G. Figueroa, and Alfonso Sastre. “A Gravitational Wave Background from Reheating after Hybrid Inflation”. In: Phys. Rev. D77.IFT-UAM-CSIC-07-38 (2008), p. 043517. doi: 10.1103/PhysRevD.77.043517. arXiv: 0707.0839 [hep-ph].
  • [187] Jean Francois Dufaux et al. “Theory and Numerics of Gravitational Waves from Preheating after Inflation”. In: Phys. Rev. D76 (2007), p. 123517. doi: 10.1103/PhysRevD.76.123517. arXiv: 0707.0875 [astro-ph].
  • [188] Jean-Francois Dufaux et al. “Gravity Waves from Tachyonic Preheating after Hybrid Inflation”. In: JCAP 0903.FTUAM-08-25, IFT-UAM-CSIC-08-90 (2009), p. 001. doi: 10.1088/ 1475-7516/2009/03/001. arXiv: 0812.2917 [astro-ph].
  • [189] Jean-Francois Dufaux, Daniel G. Figueroa, and Juan Garcia-Bellido. “Gravitational Waves from Abelian Gauge Fields and Cosmic Strings at Preheating”. In: Phys. Rev. D82.IFTUAM-CSIC-10-38, CERN-PH-TH-2010-121 (2010), p. 083518. doi: 10.1103/PhysRevD.82. 083518. arXiv: 1006.0217 [astro-ph.CO]. 276 BIBLIOGRAPHY
  • [190] Daniel G. Figueroa and Francisco Torrenti. “Gravitational Wave Production from Preheating: Parameter Dependence”. In: JCAP 1710.CERN-TH-2017-152, IFT-UAM-CSIC-17-069 (2017), p. 057. doi: 10.1088/1475-7516/2017/10/057. arXiv: 1707.04533 [astro-ph.CO].
  • [191] Peter Adshead, John T. Giblin, and Zachary J. Weiner. “Gravitational Waves from Gauge Preheating”. In: Phys. Rev. D98.4 (2018), p. 043525. doi: 10.1103/PhysRevD.98.043525. arXiv: 1805.04550 [astro-ph.CO].
  • [192] Shuang-Yong Zhou et al. “Gravitational Waves from Oscillon Preheating”. In: JHEP 10 (2013), p. 026. doi: 10.1007/JHEP10(2013)026. arXiv: 1304.6094 [astro-ph.CO].
  • [193] Stefan Antusch, Francesco Cefala, and Stefano Orani. “Gravitational Waves from Oscillons after Inflation”. In: Phys. Rev. Lett. 118.1 (2017), p. 011303. doi: 10.1103/PhysRevLett. 120.219901,10.1103/PhysRevLett.118.011303. arXiv: 1607.01314 [astro-ph.CO].
  • [193] Stefan Antusch, Francesco Cefala, and Stefano Orani. “Gravitational Waves from Oscillons after Inflation”. In: Phys. Rev. Lett. 118.1 (2017), p. 011303. doi: 10.1103/PhysRevLett. 120.219901,10.1103/PhysRevLett.118.011303. arXiv: 1607.01314 [astro-ph.CO].
  • [194] Stefan Antusch, Francesco Cefala, and Stefano Orani. “What Can We Learn from the Stochastic Gravitational Wave Background Produced by Oscillons?” In: JCAP 1803.03 (2018), p. 032. doi: 10.1088/1475-7516/2018/03/032. arXiv: 1712.03231 [astro-ph.CO].
  • [195] Jing Liu et al. “Gravitational Waves from Oscillons with Cuspy Potentials”. In: Phys. Rev. Lett. 120.3 (2018), p. 031301. doi: 10.1103/PhysRevLett.120.031301. arXiv: 1707.09841 [astro-ph.CO].
  • [196] Mustafa A. Amin et al. “Gravitational Waves from Asymmetric Oscillon Dynamics?” In: Phys. Rev. D98 (2018), p. 024040. doi: 10.1103/PhysRevD.98.024040. arXiv: 1803.08047 [astro-ph.CO].
  • [197] Marc Kamionkowski, Arthur Kosowsky, and Michael S. Turner. “Gravitational Radiation from First Order Phase Transitions”. In: Phys. Rev. D49.IASSNS-HEP-93-44, FERMILABPUB-93-235-A (1994), pp. 2837–2851. doi: 10.1103/PhysRevD.49.2837. arXiv: astroph/9310044.
  • [198] Chiara Caprini, Ruth Durrer, and Geraldine Servant. “Gravitational Wave Generation from Bubble Collisions in First-Order Phase Transitions: An Analytic Approach”. In: Phys. Rev. D77.CERN-PH-TH-2007-206, SACLAY-T07-142 (2008), p. 124015. doi: 10.1103/PhysRevD. 77.124015. arXiv: 0711.2593 [astro-ph].
  • [199] Stephan J. Huber and Thomas Konstandin. “Gravitational Wave Production by Collisions: More Bubbles”. In: JCAP 0809 (2008), p. 022. doi: 10.1088/1475-7516/2008/09/022. arXiv: 0806.1828 [hep-ph].
  • [200] Mark Hindmarsh et al. “Gravitational Waves from the Sound of a First Order Phase Transition”. In: Phys. Rev. Lett. 112.HIP-2013-07-TH (2014), p. 041301. doi: 10.1103/PhysRevLett. 112.041301. arXiv: 1304.2433 [hep-ph].
  • [201] Mark Hindmarsh et al. “Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition”. In: Phys. Rev. D92.HIP-2015-13-TH (2015), p. 123009. doi: 10.1103/PhysRevD.92.123009. arXiv: 1504.03291 [astro-ph.CO].
  • [202] Chiara Caprini et al. “Science with the Space-Based Interferometer eLISA. II: Gravitational Waves from Cosmological Phase Transitions”. In: JCAP 1604.DESY-15-246 (2016), p. 001. doi: 10.1088/1475-7516/2016/04/001. arXiv: 1512.06239 [astro-ph.CO]. BIBLIOGRAPHY 277
  • [203] Daniel Cutting, Mark Hindmarsh, and David J. Weir. “Gravitational Waves from Vacuum First-Order Phase Transitions: From the Envelope to the Lattice”. In: Phys. Rev. D97.HIP2018-4-TH (2018), p. 123513. doi: 10.1103/PhysRevD.97.123513. arXiv: 1802.05712 [astro-ph.CO].
  • [204] M. Sakellariadou. “Gravitational Waves Emitted from Infinite Strings”. In: Phys. Rev. D42 (1990), pp. 354–360. doi: 10.1103/PhysRevD.42.354.
  • [205] Thibault Damour and Alexander Vilenkin. “Gravitational Radiation from Cosmic (Super)Strings: Bursts, Stochastic Background, and Observational Windows”. In: Phys.Rev. D 71 (2005), p. 063510. doi: 10.1103/PhysRevD.71.063510. arXiv: hep-th/0410222.
  • [206] Daniel G. Figueroa, Mark Hindmarsh, and Jon Urrestilla. “Exact Scale-Invariant Background of Gravitational Waves from Cosmic Defects”. In: Phys. Rev. Lett. 110.10 (2013), p. 101302. doi: 10.1103/PhysRevLett.110.101302. arXiv: 1212.5458 [astro-ph.CO].
  • [207] Heather Audley et al. “Laser Interferometer Space Antenna”. In: (2017). arXiv: 1702.00786 [astro-ph.IM].
  • [208] C. J. Hogan and M. J. Rees. “Gravitational Interactions of Cosmic Strings”. In: Nature 311 (1984), pp. 109–113. doi: 10.1038/311109a0.
  • [209] Frank S. Accetta and Lawrence M. Krauss. “The Stochastic Gravitational Wave Spectrum Resulting from Cosmic String Evolution”. In: Nucl. Phys. B319.YCTP-P5-88 (1989), pp. 747–764. doi: 10.1016/0550-3213(89)90628-7.
  • [210] David P. Bennett and Francois R. Bouchet. “Constraints on the Gravity Wave Background Generated by Cosmic Strings”. In: Phys. Rev. D43.UCRL-JC-105282 (1991), pp. 2733–2735. doi: 10.1103/PhysRevD.43.2733.
  • [211] Xavier Siemens, Vuk Mandic, and Jolien Creighton. “Gravitational Wave Stochastic Background from Cosmic (Super)Strings”. In: Phys. Rev. Lett. 98 (2007), p. 111101. doi: 10. 1103/PhysRevLett.98.111101. arXiv: astro-ph/0610920.
  • [212] S. Olmez, V. Mandic, and X. Siemens. “Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings”. In: Phys.Rev. D 81 (2010), p. 104028. doi: 10.1103/ PhysRevD.81.104028. arXiv: 1004.0890 [astro-ph.CO].
  • [213] S. A. Sanidas, R. A. Battye, and B. W. Stappers. “Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array”. In: Physical Review D 85.12 (June 2012), p. 122003. issn: 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.85.122003. arXiv: 1201.2419.
  • [214] Sotirios A. Sanidas, Richard A. Battye, and Benjamin W. Stappers. “Projected Constraints on the Cosmic (Super)String Tension with Future Gravitational Wave Detection Experiments”. In: Astrophys. J. 764 (2013), p. 108. doi: 10.1088/0004-637X/764/1/108. arXiv: 1211.5042 [astro-ph.CO].
  • [215] Sachiko Kuroyanagi et al. “Forecast Constraints on Cosmic Strings from Future CMB, Pulsar Timing and Gravitational Wave Direct Detection Experiments”. In: Phys. Rev. D87.2 (2013), p. 023522. doi: 10.1103/PhysRevD.87.069903,10.1103/PhysRevD.87.023522. arXiv: 1210.2829 [astro-ph.CO]. 278 BIBLIOGRAPHY
  • [215] Sachiko Kuroyanagi et al. “Forecast Constraints on Cosmic Strings from Future CMB, Pulsar Timing and Gravitational Wave Direct Detection Experiments”. In: Phys. Rev. D87.2 (2013), p. 023522. doi: 10.1103/PhysRevD.87.069903,10.1103/PhysRevD.87.023522. arXiv: 1210.2829 [astro-ph.CO]. 278 BIBLIOGRAPHY
  • [216] L. Sousa and P. P. Avelino. “Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution”. In: Phys. Rev. D88.2 (2013), p. 023516. doi: 10.1103/PhysRevD.88.023516. arXiv: 1304.2445 [astro-ph.CO].
  • [217] L. Sousa and P. P. Avelino. “Stochastic Gravitational Wave Background Generated by Cosmic String Networks: The Small-Loop Regime”. In: Phys. Rev. D89.8 (2014), p. 083503. doi: 10.1103/PhysRevD.89.083503. arXiv: 1403.2621 [astro-ph.CO].
  • [218] Yanou Cui et al. “Probing the Pre-BBN Universe with Gravitational Waves from Cosmic Strings”. In: JHEP 01.KCL-PH-TH/2018-47 (2019), p. 081. doi: 10.1007/JHEP01(2019) 081. arXiv: 1808.08968 [hep-ph].
  • [219] Alexander C. Jenkins and Mairi Sakellariadou. “Anisotropies in the Stochastic GravitationalWave Background: Formalism and the Cosmic String Case”. In: Phys. Rev. D98.KCL-PHTH/2018-6, KCL-PH-TH-2018-6 (2018), p. 063509. doi: 10.1103/PhysRevD.98.063509. arXiv: 1802.06046 [astro-ph.CO].
  • [220] Genevi` eve B´ elanger et al. “micrOMEGAs5.0 : Freeze-In”. In: Comput. Phys. Commun. 231 (2018), pp. 173–186. doi: 10.1016/j.cpc.2018.04.027. arXiv: 1801.03509 [hep-ph].
  • [221] David P. Bennett and Francois R. Bouchet. “Evidence for a Scaling Solution in Cosmic String Evolution”. In: Phys. Rev. Lett. 60.FERMILAB-PUB-87-205-A (1988), p. 257. doi: 10.1103/PhysRevLett.60.257.
  • [222] David P. Bennett. “The Evolution of Cosmic Strings”. In: Phys. Rev. D33.SLAC-PUB-3743 (1986), p. 872. doi: 10.1103/PhysRevD.34.3932.2,10.1103/PhysRevD.33.872.
  • [222] David P. Bennett. “The Evolution of Cosmic Strings”. In: Phys. Rev. D33.SLAC-PUB-3743 (1986), p. 872. doi: 10.1103/PhysRevD.34.3932.2,10.1103/PhysRevD.33.872.
  • [223] David P. Bennett. “Evolution of Cosmic Strings. 2.” In: Phys. Rev. D34.SLAC-PUB-3989 (1986), p. 3592. doi: 10.1103/PhysRevD.34.3592.
  • [224] C. J. Burden. “Gravitational Radiation from a Particular Class of Cosmic Strings”. In: Phys. Lett. 164B.Print-85-0745 (GLASGOW) (1985), pp. 277–281. doi: 10.1016/03702693(85)90326-0.
  • [225] David Garfinkle and Tanmay Vachaspati. “Radiation from Kinky, Cuspless Cosmic Loops”. In: Phys. Rev. D36.Print-87-0513 (WASH.U.,ST.LOUIS) (1987), p. 2229. doi: 10.1103/ PhysRevD.36.2229.
  • [226] C.J.A.P. Martins, J.N. Moore, and E.P.S. Shellard. “A Unified Model for Vortex String Network Evolution”. In: Phys. Rev. Lett. 92.DAMTP-2000-32 (2004), p. 251601. doi: 10. 1103/PhysRevLett.92.251601. arXiv: hep-ph/0310255.
  • [227] J. N. Moore, E. P. S. Shellard, and C. J. A. P. Martins. “On the Evolution of Abelian-Higgs String Networks”. In: Phys. Rev. D65.DAMTP-2001-65 (2002), p. 023503. doi: 10.1103/ PhysRevD.65.023503. arXiv: hep-ph/0107171.
  • [228] Jean M. Quashnock and Tsvi Piran. “Effects of Gravitational Back Reaction on Small Scale Structure of Cosmic Strings”. In: Phys. Rev. D43.FERMILAB-PUB-90-179-A (1991), R3785–R3788. doi: 10.1103/PhysRevD.43.R3785.
  • [229] T. W. B. Kibble and Edmund J. Copeland. “Evolution of Small Scale Structure on Cosmic Strings”. In: Phys. Scripta T36.IMPERIAL-TP-89-90-27 (1991), pp. 153–166. doi: 10.1088/ 0031-8949/1991/T36/017. BIBLIOGRAPHY 279
  • [230] C. J. A. P. Martins, E. P. S. Shellard, and J. P. P. Vieira. “Models for Small-Scale Structure of Cosmic Strings: Mathematical Formalism”. English. In: Physical Review D 90.4 (Aug. 2014), p. 043518. issn: 1550-7998, 1550-2368. doi: 10.1103/PhysRevD.90.043518. arXiv: 1405.7722 [hep-ph].
  • [231] E. J. Copeland, Jo˜ ao Magueijo, and D. A. Steer. “Cosmological Parameter Dependence in Local String Theories of Structure Formation”. en. In: Physical Review D 61.DAMTP-199934 (Feb. 2000). issn: 0556-2821, 1089-4918. doi: 10.1103/PhysRevD.61.063505. arXiv: astro-ph/9903174.
  • [232] Joseph Polchinski and Jorge V. Rocha. “Cosmic String Structure at the Gravitational Radiation Scale”. In: Phys. Rev. D75 (2007), p. 123503. doi: 10.1103/PhysRevD.75.123503. arXiv: gr-qc/0702055.
  • [233] R. L. Davis and E. P. S. Shellard. “DO AXIONS NEED INFLATION?” In: Nucl. Phys. B324.NSF-ITP-88-195, MIT-CTP-1685, CSR-AT-89-07 (1989), pp. 167–186. doi: 10.1016/ 0550-3213(89)90187-9.
  • [234] Ken D. Olum and J. J. Blanco-Pillado. “Radiation from Cosmic String Standing Waves”. In: Phys. Rev. Lett. 84 (2000), pp. 4288–4291. doi: 10.1103/PhysRevLett.84.4288. arXiv: astro-ph/9910354.
  • [235] David Daverio et al. “Energy-Momentum Correlations for Abelian Higgs Cosmic Strings”. In: Phys. Rev. D93.8 (2016), p. 085014. doi: 10.1103/PhysRevD.95.049903,10.1103/ PhysRevD.93.085014. arXiv: 1510.05006 [astro-ph.CO].
  • [236] Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: John Wiley and Sons, 1972. isbn: 978-0-471-92567-5.
  • [237] Jose J. Blanco-Pillado, Ken D. Olum, and Benjamin Shlaer. “Cosmic String Loop Shapes”. In: Phys. Rev. D92.6 (2015), p. 063528. doi: 10.1103/PhysRevD.92.063528. arXiv: 1508. 02693 [astro-ph.CO].
  • [238] Jose J. Blanco-Pillado, Ken D. Olum, and Jeremy M. Wachter. “Gravitational Backreaction Simulations of Simple Cosmic String Loops”. In: Phys. Rev. D 100.2 (2019), p. 023535. doi: 10.1103/PhysRevD.100.023535. arXiv: 1903.06079 [gr-qc].
  • [239] David F. Chernoff and S. H. Henry Tye. “Detection of Low Tension Cosmic Superstrings”. In: JCAP 1805.05 (2018), p. 002. doi: 10.1088/1475-7516/2018/05/002. arXiv: 1712.05060 [astro-ph.CO].
  • [240] Lawrence M. Krauss. “Gravitational Waves from Global Phase Transitions”. In: Phys. Lett. B284.YCTP-P33-91 (1992), pp. 229–233. doi: 10.1016/0370-2693(92)90425-4.
  • [241] Katherine Jones-Smith, Lawrence M. Krauss, and Harsh Mathur. “A Nearly Scale Invariant Spectrum of Gravitational Radiation from Global Phase Transitions”. In: Phys. Rev. Lett. 100 (2008), p. 131302. doi: 10.1103/PhysRevLett.100.131302. arXiv: 0712.0778 [astro-ph].
  • [242] Elisa Fenu et al. “Gravitational Waves from Self-Ordering Scalar Fields”. In: JCAP 0910.IFTUAM-CSIC-09-34, CERN-PH-TH-2009-145 (2009), p. 005. doi: 10.1088/1475-7516/2009/ 10/005. arXiv: 0908.0425 [astro-ph.CO].
  • [243] Wilfried Buchm¨ uller et al. “The Gravitational Wave Spectrum from Cosmological B-L Breaking”. In: JCAP 1310.DESY-13-050, IPMU-13-0091 (2013), p. 003. doi: 10.1088/14757516/2013/10/003. arXiv: 1305.3392 [hep-ph]. 280 BIBLIOGRAPHY
  • [244] Mark Hindmarsh. “Gravitational Radiation from Kinky Infinite Strings”. In: Phys. Lett. B251.NCL-90-TP-11 (1990), pp. 28–33. doi: 10.1016/0370-2693(90)90226-V.
  • [245] Yuka Matsui and Sachiko Kuroyanagi. “Gravitational Wave Background from Kink-Kink Collisions on Infinite Cosmic Strings”. In: (2019). arXiv: 1902.09120 [astro-ph.CO].
  • [246] Michael Kramer and David J. Champion. “The European Pulsar Timing Array and the Large European Array for Pulsars”. In: Class. Quant. Grav. 30 (2013), p. 224009. doi: 10.1088/0264-9381/30/22/224009.
  • [247] Fazlollah Hajkarim et al. “Effects of the QCD Equation of State and Lepton Asymmetry on Primordial Gravitational Waves”. In: (2019). arXiv: 1904.01046 [hep-ph].
  • [248] Robert R. Caldwell, Tristan L. Smith, and Devin G. E. Walker. “Using a Primordial Gravitational Wave Background to Illuminate New Physics”. In: (2018). arXiv: 1812 . 07577 [astro-ph.CO].
  • [249] R. A. Battye, R. R. Caldwell, and E. P. S. Shellard. “Gravitational Waves from Cosmic Strings”. In: Topological Defects in Cosmology. IMPERIAL-TP-95-96-30. 1997, pp. 11–31. arXiv: astro-ph/9706013.
  • [250] Takeo Moroi and Lisa Randall. “Wino Cold Dark Matter from Anomaly Mediated SUSY Breaking”. In: Nucl. Phys. B570.IASSNS-HEP-99-54, PUPT-1873, MIT-CTP-2873 (2000), pp. 455–472. doi: 10.1016/S0550-3213(99)00748-8. arXiv: hep-ph/9906527.
  • [251] Michael Joyce and Tomislav Prokopec. “Turning around the Sphaleron Bound: Electroweak Baryogenesis in an Alternative Postinflationary Cosmology”. In: Phys. Rev. D57.CLNS-971512, NBI-HE-97-48 (1998), pp. 6022–6049. doi: 10 . 1103 / PhysRevD . 57 . 6022. arXiv: hep-ph/9709320.
  • [252] Pierre Salati. “Quintessence and the Relic Density of Neutralinos”. In: Phys. Lett. B571 (2003), pp. 121–131. doi: 10.1016/j.physletb.2003.07.073. arXiv: astro-ph/0207396.
  • [253] Daniel J. H. Chung, Lisa L. Everett, and Konstantin T. Matchev. “Inflationary Cosmology Connecting Dark Energy and Dark Matter”. In: Phys. Rev. D76.UFIFT-HEP-07-5, MADPH-07-1487 (2007), p. 103530. doi: 10.1103/PhysRevD.76.103530. arXiv: 0704.3285 [hep-ph].
  • [254] Vivian Poulin et al. “Cosmological Implications of Ultralight Axionlike Fields”. In: Phys. Rev. D98.8 (2018), p. 083525. doi: 10.1103/PhysRevD.98.083525. arXiv: 1806.10608 [astro-ph.CO].
  • [255] Dario Bettoni, Guillem Dom` enech, and Javier Rubio. “Gravitational Waves from Global Cosmic Strings in Quintessential Inflation”. In: JCAP 1902.HIP-2018-21/TH (2019), p. 034. doi: 10.1088/1475-7516/2019/02/034. arXiv: 1810.11117 [astro-ph.CO].
  • [256] Nicol´ as Bernal and Fazlollah Hajkarim. “Primordial Gravitational Waves in Nonstandard Cosmologies”. In: Phys. Rev. D100.6 (2019), p. 063502. doi: 10.1103/PhysRevD.100. 063502. arXiv: 1905.10410 [astro-ph.CO].
  • [257] G. S. F. Guedes, P. P. Avelino, and L. Sousa. “Signature of Inflation in the Stochastic Gravitational Wave Background Generated by Cosmic String Networks”. In: Phys. Rev. D98.12 (2018), p. 123505. doi: 10.1103/PhysRevD.98.123505. arXiv: 1809.10802 [astro-ph.CO].
  • [258] Eric Thrane and Joseph D. Romano. “Sensitivity Curves for Searches for Gravitational-Wave Backgrounds”. In: Phys. Rev. D88.12 (2013), p. 124032. doi: 10.1103/PhysRevD.88.124032. arXiv: 1310.5300 [astro-ph.IM]. BIBLIOGRAPHY 281
  • [259] L. Lentati et al. “European Pulsar Timing Array Limits on an Isotropic Stochastic GravitationalWave Background”. In: Mon. Not. Roy. Astron. Soc. 453.3 (2015), pp. 2576–2598. doi: 10.1093/mnras/stv1538. arXiv: 1504.03692 [astro-ph.CO].
  • [260] https://www.cosmos.esa.int/web/lisa/lisa-documents.
  • [261] https://dms.cosmos.esa.int/COSMOS/doc-fetch.php?id=3752747.
  • [262] Nikolaos Karnesis, Antoine Petiteau, and Marc Lilley. “A Template-Free Approach for Detecting a Gravitational Wave Stochastic Background with LISA”. In: (2019). arXiv: 1906. 09027 [astro-ph.IM].
  • [263] Graham R. Vincent, Mark Hindmarsh, and Mairi Sakellariadou. “Correlations in Cosmic String Networks”. In: Phys. Rev. D55.SUSX-TH-96-008 (1997), pp. 573–581. doi: 10.1103/ PhysRevD.55.573. arXiv: astro-ph/9606137.
  • [264] G. R. Dvali, Q. Shafi, and S. Solganik. “D-Brane Inflation”. In: 4th European Meeting from the Planck Scale to the Electroweak Scale (Planck 2001) La Londe Les Maures, Toulon, France, May 11-16, 2001. 2001. arXiv: hep-th/0105203.
  • [265] Nicholas T. Jones, Horace Stoica, and S. H. Henry Tye. “The Production, Spectrum and Evolution of Cosmic Strings in Brane Inflation”. In: Phys. Lett. B563 (2003), pp. 6–14. doi: 10.1016/S0370-2693(03)00592-6. arXiv: hep-th/0303269.
  • [266] Mark G. Jackson, Nicholas T. Jones, and Joseph Polchinski. “Collisions of Cosmic F and D-Strings”. In: JHEP 0510.CU-TP-1112, CLNS-04-1880, NSF-KITP-04-55 (2005), p. 013. doi: 10.1088/1126-6708/2005/10/013. arXiv: hep-th/0405229.
  • [267] Mairi Sakellariadou. “A Note on the Evolution of Cosmic String/Superstring Networks”. In: JCAP 0504 (2005), p. 003. doi: 10.1088/1475- 7516/2005/04/003. arXiv: hepth/0410234.
  • [268] Anastasios Avgoustidis and E. P. S. Shellard. “Effect of Reconnection Probability on Cosmic (Super)String Network Density”. In: Phys. Rev. D73.DAMTP-2005-133 (2006), p. 041301. doi: 10.1103/PhysRevD.73.041301. arXiv: astro-ph/0512582.
  • [269] P. P. Avelino and L. Sousa. “Scaling Laws for Weakly Interacting Cosmic (Super)String and p-Brane Networks”. In: Phys. Rev. D85 (2012), p. 083525. doi: 10.1103/PhysRevD.85. 083525. arXiv: 1202.6298 [astro-ph.CO].
  • [270] E. J. Copeland, T. W. B. Kibble, and Daniele A. Steer. “Collisions of Strings with Y Junctions”. In: Phys. Rev. Lett. 97 (2006), p. 021602. doi: 10.1103/PhysRevLett.97.021602. arXiv: hep-th/0601153.
  • [271] E. J. Copeland, T. W. B. Kibble, and Daniele A. Steer. “Constraints on String Networks with Junctions”. In: Phys. Rev. D75 (2007), p. 065024. doi: 10.1103/PhysRevD.75.065024. arXiv: hep-th/0611243.
  • [272] E. J. Copeland et al. “On the Collision of Cosmic Superstrings”. In: Phys. Rev. D77.IMPERIALTP-07-TK-02 (2008), p. 063521. doi: 10.1103/PhysRevD.77.063521. arXiv: 0712.0808 [hep-th].
  • [273] A. Avgoustidis and E. P. S. Shellard. “Velocity-Dependent Models for Non-Abelian/Entangled String Networks”. In: Phys. Rev. D78.UB-ECM-PF-07-11, DAMTP-2007-46 (2008), p. 103510. doi: 10.1103/PhysRevD.78.103510,10.1103/PhysRevD.80.129907. arXiv: 0705.3395 [astro-ph]. 282 BIBLIOGRAPHY
  • [273] A. Avgoustidis and E. P. S. Shellard. “Velocity-Dependent Models for Non-Abelian/Entangled String Networks”. In: Phys. Rev. D78.UB-ECM-PF-07-11, DAMTP-2007-46 (2008), p. 103510. doi: 10.1103/PhysRevD.78.103510,10.1103/PhysRevD.80.129907. arXiv: 0705.3395 [astro-ph]. 282 BIBLIOGRAPHY
  • [274] Arttu Rajantie, Mairi Sakellariadou, and Horace Stoica. “Numerical Experiments with p Fand q d-Strings: The Formation of (p,q) Bound States”. In: JCAP 0711 (2007), p. 021. doi: 10.1088/1475-7516/2007/11/021. arXiv: 0706.3662 [hep-th].
  • [275] Mairi Sakellariadou and Horace Stoica. “Dynamics of F/D Networks: The Role of Bound States”. In: JCAP 0808 (2008), p. 038. doi: 10.1088/1475-7516/2008/08/038. arXiv: 0806.3219 [hep-th].
  • [276] Anastasios Avgoustidis and Edmund J. Copeland. “The Effect of Kinematic Constraints on Multi-Tension String Network Evolution”. In: Phys. Rev. D81 (2010), p. 063517. doi: 10.1103/PhysRevD.81.063517. arXiv: 0912.4004 [hep-ph].
  • [277] A. Avgoustidis, Alkistis Pourtsidou, and Mairi Sakellariadou. “Zipping and Unzipping in String Networks: Dynamics of y-Junctions”. In: Phys. Rev. D91.2 (2015), p. 025022. doi: 10.1103/PhysRevD.91.025022. arXiv: 1411.7959 [hep-th].
  • [278] A. Pourtsidou et al. “Scaling Configurations of Cosmic Superstring Networks and Their Cosmological Implications”. In: Phys. Rev. D83 (2011), p. 063525. doi: 10.1103/PhysRevD. 83.063525. arXiv: 1012.5014 [astro-ph.CO].
  • [279] Thomas Elghozi, William Nelson, and Mairi Sakellariadou. “Cusps and Pseudocusps in Strings with Y-Junctions”. In: Phys. Rev. D90.KCL-PH-TH-2014-7 (2014), p. 123517. doi: 10.1103/PhysRevD.90.123517. arXiv: 1403.3225 [hep-th].
  • [280] Nicola Bartolo et al. “Probing Non-Gaussian Stochastic Gravitational Wave Backgrounds with LISA”. In: JCAP 1811.UMN-TH/3720-18, CERN-TH-2018-130, IFT-UAM/CSIC-1858, DESY 18-086, KCL-PH-TH/2018-22, DESY 18-086, KCL-PH-TH/2018-22, ACFI-T1808, UMN-TH-3720-18, IFT-UAM-CSIC-18-58, DESY-18-086, KCL-PH-TH-2018-22 (2018), p. 034. doi: 10.1088/1475-7516/2018/11/034. arXiv: 1806.02819 [astro-ph.CO].
  • [281] Peter Adshead and Eugene A. Lim. “3-Pt Statistics of Cosmological Stochastic Gravitational Waves”. In: Phys. Rev. D82.CAS-KITPC-ITP-156 (2010), p. 024023. doi: 10.1103/ PhysRevD.82.024023. arXiv: 0912.1615 [astro-ph.CO].
  • [282] N. Bartolo et al. “The Primordial Black Hole Dark Matter - LISA Serendipity”. In: (2018). arXiv: 1810.12218 [astro-ph.CO].
  • [283] N. Bartolo et al. “Testing Primordial Black Holes as Dark Matter through LISA”. In: (2018). arXiv: 1810.12224 [astro-ph.CO].
  • [284] Jose J. Blanco-Pillado, Ken D. Olum, and Jeremy M. Wachter. “Energy-Conservation Constraints on Cosmic String Loop Production and Distribution Functions”. In: Phys. Rev. D 100.12 (2019), p. 123526. doi: 10.1103/PhysRevD.100.123526. arXiv: 1907.09373 [astro-ph.CO].
  • [285] Jose J. Blanco-Pillado and Ken D. Olum. “Direct Determination of Cosmic String Loop Density from Simulations”. In: Phys. Rev. D 101.10 (2020), p. 103018. doi: 10 . 1103 / PhysRevD.101.103018. arXiv: 1912.10017 [astro-ph.CO].
  • [286] Matthew R. Adams and Neil J. Cornish. “Detecting a Stochastic Gravitational Wave Background in the Presence of a Galactic Foreground and Instrument Noise”. In: Phys. Rev. D89.2 (2014), p. 022001. doi: 10.1103/PhysRevD.89.022001. arXiv: 1307.4116 [gr-qc].
  • [287] Joseph Polchinski. “Cosmic String Loops and Gravitational Radiation”. English. In: arXiv:0707.0888 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] (July 2007). arXiv: 0707.0888 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th]. BIBLIOGRAPHY 283
  • [287] Joseph Polchinski. “Cosmic String Loops and Gravitational Radiation”. English. In: arXiv:0707.0888 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th] (July 2007). arXiv: 0707.0888 [astro-ph, physics:gr-qc, physics:hep-ph, physics:hep-th]. BIBLIOGRAPHY 283
  • [288] D. Kirzhnits and A. Linde. “Macroscopic Consequences of the Weinberg Model”. In: Phys. Lett. B 42 (Dec. 1972), pp. 471–474. doi: 10.1016/0370-2693(72)90109-8.
  • [289] G. R. Dvali and S. H. Henry Tye. “Brane Inflation”. In: Phys. Lett. B450 (1999), pp. 72–82. eprint: hep-ph/9812483.
  • [290] R. Durrer, M. Kunz, and A. Melchiorri. “Cosmic Structure Formation with Topological Defects”. In: Phys. Rep. 364 (June 2002), pp. 1–81. eprint: astro-ph/0110348.
  • [291] Joseph Polchinski. “Introduction to Cosmic F- and D-Strings”. In: (2004). arXiv: hep th/0412244.
  • [292] Anne-Christine Davis, Philippe Brax, and Carsten van de Bruck. “Brane Inflation and Defect Formation”. In: Phil. Trans. Roy. Soc. Lond. A366 (2008), pp. 2833–2842. doi: 10.1098/ rsta.2008.0065. arXiv: 0803.0424 [hep-th].
  • [292] Anne-Christine Davis, Philippe Brax, and Carsten van de Bruck. “Brane Inflation and Defect Formation”. In: Phil. Trans. Roy. Soc. Lond. A366 (2008), pp. 2833–2842. doi: 10.1098/ rsta.2008.0065. arXiv: 0803.0424 [hep-th].
  • [293] Edmund J. Copeland and T. W. B. Kibble. “Cosmic Strings and Superstrings”. In: Proc. Roy. Soc. Lond. A466 (2010), pp. 623–657. doi: 10.1098/rspa.2009.0591. arXiv: 0911.1345 [hep-th].
  • [294] Mairi Sakellariadou. “Cosmic Strings and Cosmic Superstrings”. In: Nucl. Phys. Proc. Suppl. 192-193 (2009), pp. 68–90. doi: 10.1016/j.nuclphysbps.2009.07.046. arXiv: 0902.0569 [hep-th].
  • [295] Andrei Lazanu and Paul Shellard. “Constraints on the Nambu-Goto Cosmic String Contribution to the CMB Power Spectrum in Light of New Temperature and Polarisation Data”. In: JCAP 1502.02 (2015), p. 024. doi: 10.1088/1475-7516/2015/02/024. arXiv: 1410.5046 [astro-ph.CO].
  • [296] J. D. McEwen et al. “Wavelet-Bayesian Inference of Cosmic Strings Embedded in the Cosmic Microwave Background”. In: Mon. Not. Roy. Astron. Soc. 472.4 (2017), pp. 4081–4098. doi: 10.1093/mnras/stx2268. arXiv: 1611.10347 [astro-ph.IM].
  • [297] A. Vafaei Sadr et al. “Multi-Scale Pipeline for the Search of String-Induced CMB Anisotropies”. In: Mon. Not. Roy. Astron. Soc. 475.1 (2018), pp. 1010–1022. doi: 10.1093/mnras/stx3126. arXiv: 1710.00173 [astro-ph.CO].
  • [298] Razvan Ciuca and Oscar F. Hern´ andez. “Inferring Cosmic String Tension through the Neural Network Prediction of String Locations in CMB Maps”. In: Mon. Not. Roy. Astron. Soc. 483.4 (2019), pp. 5179–5187. doi: 10 . 1093 / mnras / sty3478. arXiv: 1810 . 11889 [astro-ph.CO].
  • [299] Mark Hindmarsh, Christophe Ringeval, and Teruaki Suyama. “The CMB Temperature Bispectrum Induced by Cosmic Strings”. In: Phys. Rev. D80 (2009), p. 083501. doi: 10.1103/ PhysRevD.80.083501. arXiv: 0908.0432 [astro-ph.CO].
  • [300] Mark Hindmarsh, Christophe Ringeval, and Teruaki Suyama. “The CMB Temperature Trispectrum of Cosmic Strings”. In: Phys. Rev. D81 (2010), p. 063505. doi: 10 . 1103 / PhysRevD.81.063505. arXiv: 0911.1241 [astro-ph.CO].
  • [301] T. Vachaspati and A. Vilenkin. “Formation and Evolution of Cosmic Strings”. In: Phys. Rev. D30 (Nov. 1984), pp. 2036–2045.
  • [302] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. New York and London: Academic Press, 1965. 284 BIBLIOGRAPHY
  • [303] B. Allen and R. R. Caldwell. “Small-Scale Structure on a Cosmic-String Network”. en. In: Physical Review D 43.10 (May 1991), pp. 3173–3187. issn: 0556-2821. doi: 10.1103/ PhysRevD.43.3173.
  • [304] B. Allen and R. R. Caldwell. “Kinky Structure on Strings”. en. In: Physical Review D 43.8 (Apr. 1991), R2457–R2460. issn: 0556-2821. doi: 10.1103/PhysRevD.43.R2457.
  • [305] J. P. P. Vieira, C. J. A. P. Martins, and E. P. S. Shellard. “Models for Small-Scale Structure on Cosmic Strings: II. Scaling and Its Stability”. English. In: Physical Review D 94.9 (Nov. 2016), p. 096005. issn: 2470-0010, 2470-0029. doi: 10.1103/PhysRevD.94.096005. arXiv: 1611.06103.
  • [306] E. Jeong and G. F. Smoot. “Search for Cosmic Strings in CMB Anisotropies”. English. In: The Astrophysical Journal 624.1 (May 2005), pp. 21–27. issn: 0004-637X, 1538-4357. doi: 10.1086/428921. arXiv: astro-ph/0406432.
  • [307] Xavier Siemens and Ken D. Olum. “Gravitational Radiation and the Small-Scale Structure of Cosmic Strings”. In: Nucl. Phys. B611 (2001), pp. 125–145. doi: 10.1016/S0550-3213(01) 00353-4. arXiv: gr-qc/0104085.
  • [308] Xavier Siemens et al. “Gravitational Wave Bursts from Cosmic (Super)Strings: Quantitative Analysis and Constraints”. In: Phys.Rev. D 73 (2006), p. 105001. doi: 10.1103/PhysRevD. 73.105001. arXiv: gr-qc/0603115.
  • [309] Xavier Siemens, Ken D. Olum, and Alexander Vilenkin. “On the Size of the Smallest Scales in Cosmic String Networks”. In: Phys. Rev. D66 (2002), p. 043501. doi: 10.1103/PhysRevD. 66.043501. arXiv: gr-qc/0203006.
  • [310] Alexander Vilenkin. “String-Dominated Universe”. en. In: Physical Review Letters 53.10 (Sept. 1984), pp. 1016–1018. issn: 0031-9007. doi: 10.1103/PhysRevLett.53.1016.
  • [311] Lara Sousa, Pedro P. Avelino, and Guilherme S.F. Guedes. “Full Analytical Approximation to the Stochastic Gravitational Wave Background Generated by Cosmic String Networks”. In: Phys. Rev. D 101.10 (2020), p. 103508. doi: 10.1103/PhysRevD.101.103508. arXiv: 2002.01079 [astro-ph.CO].
  • [312] P. A. R. Ade et al. “Planck 2015 Results. XIII. Cosmological Parameters”. In: Astron. Astrophys. 594, A13 (2016), A13. doi: 10.1051/0004-6361/201525830. arXiv: 1502.01589 [astro-ph.CO].
  • [313] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and products. Academic press, 2014.
  • [314] J Aasi et al. “Advanced LIGO”. In: Classical and Quantum Gravity 32.7 (2015), p. 074001.
  • [315] F Acernese et al. “Advanced Virgo: A Second-Generation Interferometric Gravitational Wave Detector”. In: Classical and Quantum Gravity 32.2 (2015), p. 024001.
  • [316] R. Abbott et al. “Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog”. In: LIGO-P2000077 (Oct. 2020). arXiv: 2010.14533 [astro-ph.HE].
  • [317] K. Riles. “Gravitational Waves: Sources, Detectors and Searches”. In: Progress in Particle and Nuclear Physics 68 (2013), pp. 1–54. issn: 0146-6410. doi: http://dx.doi.org/10. 1016/j.ppnp.2012.08.001. BIBLIOGRAPHY 285
  • [318] Joseph Polchinski. “Cosmic Superstrings Revisited”. In: AIP Conf. Proc. 743.1 (2004). Ed. by P. Florides, B. Nolan, and A. Ottewill, pp. 331–340. doi: 10.1142/S0217751X05026686. arXiv: hep-th/0410082.
  • [319] Yuka Matsui et al. “Improved Calculation of the Gravitational Wave Spectrum from Kinks on Infinite Cosmic Strings”. In: JCAP 1611.11 (2016), p. 005. doi: 10.1088/1475-7516/ 2016/11/005. arXiv: 1605.08768 [astro-ph.CO].
  • [320] Matthew J. Stott, Thomas Elghozi, and Mairi Sakellariadou. “Gravitational Wave Bursts from Cosmic String Cusps and Pseudocusps”. In: (2016). arXiv: 1612.07599 [hep-th].
  • [321] Luca Pagano, Laura Salvati, and Alessandro Melchiorri. “New Constraints on Primordial Gravitational Waves from Planck 2015”. In: Phys. Lett. B760 (2016), pp. 823–825. doi: 10.1016/j.physletb.2016.07.078. arXiv: 1508.02393 [astro-ph.CO].
  • [322] Richard H. Cyburt et al. “New BBN Limits on Physics beyond the Standard Model from 4 He”. In: Astropart. Phys. 23.UMN-TH-2316-04, FTPI-MINN-04-28 (2005), pp. 313–323. doi: 10.1016/j.astropartphys.2005.01.005. arXiv: astro-ph/0408033.
  • [323] Paul D. Lasky et al. “Gravitational-Wave Cosmology across 29 Decades in Frequency”. In: Phys. Rev. X6.1 (2016), p. 011035. doi: 10.1103/PhysRevX.6.011035. arXiv: 1511.05994 [astro-ph.CO].
  • [324] K. Aggarwal et al. “The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries”. In: Astrophys. J. 880 (2019), p. 2. doi: 10.3847/1538-4357/ab2236. arXiv: 1812.11585 [astro-ph.GA].
  • [325] B.P. Abbott et al. “Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO’s and Advanced Virgo’s Third Observing Run”. In: LIGO-DCC: P2000314 LIGO-P1700272 ().
  • [326] Nelson Christensen. “Stochastic Gravitational Wave Backgrounds”. In: Rept. Prog. Phys. 82.1 (2019), p. 016903. doi: 10.1088/1361-6633/aae6b5. arXiv: 1811.08797 [gr-qc].
  • [327] Alexander C. Jenkins and Mairi Sakellariadou. “Primordial Black Holes from Cusp Collapse on Cosmic Strings”. In: arXiv:2006.16249 [astro-ph, physics:gr-qc, physics:hep-ph] KCL-PHTH/2020-30 (Aug. 2020). arXiv: 2006.16249 [astro-ph, physics:gr-qc, physics:hep-ph].
  • [327] Alexander C. Jenkins and Mairi Sakellariadou. “Primordial Black Holes from Cusp Collapse on Cosmic Strings”. In: arXiv:2006.16249 [astro-ph, physics:gr-qc, physics:hep-ph] KCL-PHTH/2020-30 (Aug. 2020). arXiv: 2006.16249 [astro-ph, physics:gr-qc, physics:hep-ph].
  • [328] B.P. Abbott et al. “Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA”. In: Living Rev. Rel. 23.LIGO-P1200087, VIR-0288A-12 (2020), p. 3. doi: 10 . 1007 / s41114 - 020 - 00026 - 9. arXiv: 1304 . 0670 [gr-qc].
  • [329] B.P. Abbott et al. “All-Sky Search for Short Gravitational-Wave Bursts in the Second Advanced LIGO and Advanced Virgo Run”. In: Phys. Rev. D 100.LIGO-P1800308 (2019), p. 024017. doi: 10.1103/PhysRevD.100.024017. arXiv: 1905.03457 [gr-qc].
  • [330] Kipp C. Cannon. “A Bayesian Coincidence Test for Noise Rejection in a GravitationalWave Burst Search”. In: Class.Quant.Grav. 25 (2008), p. 105024. doi: 10.1088/02649381/25/10/105024.
  • [331] B. P. Abbott et al. “Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914”. In: Class. Quant. Grav. 33.13 (2016), p. 134001. doi: 10.1088/0264-9381/33/13/134001. arXiv: 1602.03844 [gr-qc]. 286 BIBLIOGRAPHY
  • [332] Miriam Cabero et al. “Blip Glitches in Advanced LIGO Data”. In: Class. Quant. Grav. 36.15 (2019), p. 15. doi: 10.1088/1361-6382/ab2e14. arXiv: 1901.05093 [physics.ins-det].
  • [333] Patrick R. Brady, Jolien D.E. Creighton, and Alan G. Wiseman. “Upper Limits on GravitationalWave Signals Based on Loudest Events”. In: Class.Quant.Grav. 21 (2004), S1775–S1782. doi: 10.1088/0264-9381/21/20/020. arXiv: gr-qc/0405044.
  • [334] V. Mandic et al. “Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background”. In: Physical Review Letters 109.17 (Oct. 2012). issn: 1079-7114. doi: 10. 1103/physrevlett.109.171102.
  • [335] Despoina Pazouli, Anastasios Avgoustidis, and Edmund J. Copeland. “The Cusp Properties of High Harmonic Loops”. In: (Aug. 2020). arXiv: 2008.13693 [hep-th].
  • [336] Yanou Cui et al. “Cosmic Archaeology with Gravitational Waves from Cosmic Strings”. In: Phys. Rev. D 97.KCL-PH-TH-2017-51 (2018), p. 123505. doi: 10.1103/PhysRevD.97. 123505. arXiv: 1711.03104 [hep-ph].
  • [337] Yann Gouttenoire, G´ eraldine Servant, and Peera Simakachorn. “Beyond the Standard Models with Cosmic Strings”. In: JCAP 07.DESY-19-204 (2020), p. 032. doi: 10.1088/14757516/2020/07/032. arXiv: 1912.02569 [hep-ph].
  • [338] J. Urrestilla, A. Achucarro, and A. C. Davis. “D Term Inflation without Cosmic Strings”. In: Phys. Rev. Lett. 92 (2004), p. 251302. doi: 10.1103/PhysRevLett.92.251302. arXiv: hep-th/0402032.
  • [339] Yoichi Aso et al. “Interferometer Design of the KAGRA Gravitational Wave Detector”. In: Phys. Rev. D 88.4 (Aug. 2013), p. 043007. doi: 10.1103/PhysRevD.88.043007.
  • [340] Pijushpani Bhattacharjee. “Cosmic Strings and Ultrahigh-Energy Cosmic Rays”. In: Phys. Rev. D40.PRINT-89-0793 (FERMILAB), FERMILAB-PUB-89-196-A (1989), p. 3968. doi: 10.1103/PhysRevD.40.3968.
  • [341] A. A. Abdo et al. “The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data”. In: Phys. Rev. Lett. 104.SLAC-PUB13940 (2010), p. 101101. doi: 10 . 1103 / PhysRevLett . 104 . 101101. arXiv: 1002 . 3603 [astro-ph.HE].
  • [342] Jane H. MacGibbon and Robert H. Brandenberger. “High-Energy Neutrino Flux from Ordinary Cosmic Strings”. In: Nucl. Phys. B331.BROWN-HET-697 (1990), pp. 153–172. doi: 10.1016/0550-3213(90)90020-E.
  • [343] Jane H. MacGibbon and Robert H. Brandenberger. “Gamma-Ray Signatures from Ordinary Cosmic Strings”. In: Phys. Rev. D47.BROWN-HET-765 (1993), pp. 2283–2296. doi: 10. 1103/PhysRevD.47.2283. arXiv: astro-ph/9206003.
  • [344] Robert H. Brandenberger, A. T. Sornborger, and M. Trodden. “Gamma-Ray Bursts from Ordinary Cosmic Strings”. In: Phys. Rev. D48.BROWN-HET-896 (1993), pp. 940–942. doi: 10.1103/PhysRevD.48.940. arXiv: hep-ph/9302254.
  • [345] Yanou Cui and David E. Morrissey. “Non-Thermal Dark Matter from Cosmic Strings”. In: Phys. Rev. D79.MCTP-08-09, NSF-KITP-08-17 (2009), p. 083532. doi: 10.1103/PhysRevD. 79.083532. arXiv: 0805.1060 [hep-ph].
  • [346] H. F. Santana Mota and Mark Hindmarsh. “Big-Bang Nucleosynthesis and Gamma-Ray Constraints on Cosmic Strings with a Large Higgs Condensate”. In: Phys. Rev. D91.4 (2015), p. 043001. doi: 10.1103/PhysRevD.91.043001. arXiv: 1407.3599 [hep-ph]. BIBLIOGRAPHY 287
  • [347] Jean-Francois Dufaux. “Cosmic Super-Strings and Kaluza-Klein Modes”. In: JCAP 1209 (2012), p. 022. doi: 10.1088/1475-7516/2012/09/022. arXiv: 1201.4850 [hep-th].
  • [348] M. Punturo et al. “The Einstein Telescope: A Third-Generation Gravitational Wave Observatory”. In: Proceedings, 14th Workshop on Gravitational Wave Data Analysis (GWDAW14): Rome, Italy, January 26-29, 2010. Vol. 27. Class. Quant. Grav. 2010, p. 194002. doi: 10.1088/0264-9381/27/19/194002.
  • [349] S. Hild et al. “Sensitivity Studies for Third-Generation Gravitational Wave Observatories”. In: Class. Quant. Grav. 28 (2011), p. 094013. doi: 10.1088/0264-9381/28/9/094013. arXiv: 1012.0908 [gr-qc].
  • [350] T.W.B. Kibble. “Phase Transitions in the Early Universe”. In: Acta Phys. Polon. B 13.ICTP81-82-19 (1982), p. 723.
  • [351] Nicholas T. Jones, Horace Stoica, and S.H.Henry Tye. “Brane Interaction as the Origin of Inflation”. In: JHEP 07 (2002), p. 051. doi: 10.1088/1126-6708/2002/07/051. arXiv: hep-th/0203163.
  • [352] Saswat Sarangi and S.H.Henry Tye. “Cosmic String Production towards the End of Brane Inflation”. In: Phys. Lett. B 536.CLNS-02-1786 (2002), pp. 185–192. doi: 10.1016/S03702693(02)01824-5. arXiv: hep-th/0204074.
  • [353] Jon Urrestilla and Alexander Vilenkin. “Evolution of Cosmic Superstring Networks: A Numerical Simulation”. In: JHEP 02 (2008), p. 037. doi: 10.1088/1126-6708/2008/02/037. arXiv: 0712.1146 [hep-th].
  • [354] B. Carter. “Covariant Mechanics of Simple and Conducting Strings and Membranes”. In: The Formation and Evolution of Cosmic Strings. Proceedings, Workshop, Cambridge, UK, July 3-7, 1989. Ed. by G.W. Gibbons, S.W. Hawking, and T. Vachaspati. 1990, pp. 143–178.
  • [355] Brandon Carter and Patrick Peter. “Supersonic String Models for Witten Vortices”. In: Phys.Rev. D52.DAMTP-R-94-56 (1995), pp. 1744–1748. doi: 10.1103/PhysRevD.52.1744. arXiv: hep-ph/9411425.
  • [356] Silvano Bonazzola and Patrick Peter. “Can High-Energy Cosmic Rays Be Vortons?” In: Astropart. Phys. 7 (1997), pp. 161–172. doi: 10.1016/S0927-6505(97)00015-7. arXiv: hep-ph/9701246.
  • [357] B. Carter. “Duality Relation between Charged Elastic Strings and Superconducting Cosmic Strings”. In: Phys. Lett. B224 (1989), pp. 61–66. doi: 10.1016/0370-2693(89)91051-4.
  • [358] B. Carter. “Basic Brane Theory”. In: Class. Quant. Grav. 9 (1992), S19–S33. doi: 10.1088/ 0264-9381/9/S/002.
  • [359] Arif Babul, Tsvi Piran, and David N. Spergel. “Bosonic Superconducting Cosmic Strings. 1. Classical Field Theory Solutions”. In: Phys. Lett. B 202.IASSNS-AST-87/4 (1988), pp. 307– 314. doi: 10.1016/0370-2693(88)90476-5.
  • [360] P. Peter. “Superconducting Cosmic String: Equation of State for Space - like and Time - like Current in the Neutral Limit”. In: Phys. Rev. D45 (1992), pp. 1091–1102. doi: 10.1103/ PhysRevD.45.1091.
  • [361] Brandon Carter and Patrick Peter. “Dynamics and Integrability Property of the Chiral String Model”. In: Phys. Lett. B466 (1999), pp. 41–49. doi: 10.1016/S0370-2693(99)01070-9. arXiv: hep-th/9905025. 288 BIBLIOGRAPHY
  • [362] Christophe Ringeval. “Equation of State of Cosmic Strings with Fermionic Current-Carriers”. In: Phys. Rev. D63 (2001), p. 063508. doi: 10.1103/PhysRevD.63.063508. arXiv: hepph/0007015.
  • [363] Christophe Ringeval. “Fermionic Massive Modes along Cosmic Strings”. In: Phys. Rev. D64 (2001), p. 123505. doi: 10.1103/PhysRevD.64.123505. arXiv: hep-ph/0106179.
  • [364] P. Peter. “Equation of State of Cosmic Strings in the Presence of Charged Particles”. In: Class. Quant. Grav. 9 (1992), S197–S206. doi: 10.1088/0264-9381/9/S/013.
  • [365] P. Peter. “Influence of the Electric Coupling Strength in Current Carrying Cosmic Strings”. In: Phys. Rev. D 46 (1992), pp. 3335–3349. doi: 10.1103/PhysRevD.46.3335.
  • [366] B. Carter. “Mechanics of Cosmic Rings”. In: Phys. Lett. B 238 (1990), pp. 166–171. doi: 10.1016/0370-2693(90)91714-M. arXiv: hep-th/0703023.
  • [367] Stephen C. Davis, Anne-Christine Davis, and Mark Trodden. “N=1 Supersymmetric Cosmic Strings”. In: Phys. Lett. B 405.DAMTP-96-107, MIT-CTP-2612 (1997), pp. 257–264. doi: 10.1016/S0370-2693(97)00642-4. arXiv: hep-ph/9702360.
  • [368] B. Carter and D. A. Steer. “Symplectic Structure for Elastic and Chiral Conducting Cosmic String Models”. In: Phys. Rev. D69 (2004), p. 125002. doi: 10.1103/PhysRevD.69.125002. arXiv: hep-th/0307161.
  • [369] Mark Hindmarsh and Owe Philipsen. “WIMP Dark Matter and the QCD Equation of State”. In: Phys. Rev. D71.MS-TP-05-1 (2005), p. 087302. doi: 10.1103/PhysRevD.71.087302. arXiv: hep-ph/0501232.
  • [370] Jonathan Rocher and Mairi Sakellariadou. “Constraints on Supersymmetric Grand Unified Theories from Cosmology”. In: JCAP 2005.3, 004 (Mar. 2005), p. 004. doi: 10.1088/14757516/2005/03/004. arXiv: hep-ph/0406120.
  • [371] Arttu Rajantie. “Formation of Topological Defects in Gauge Field Theories”. In: Int. J. Mod. Phys. A 17.DAMTP-2001-78 (2002), pp. 1–44. doi: 10.1142/S0217751X02005426. arXiv: hep-ph/0108159.
  • [372] R.J. Rivers, F.C. Lombardo, and F.D. Mazzitelli. “The Formation of Classical Defects after a Slow Quantum Phase Transition”. In: Phys. Lett. B 539 (2002), pp. 1–7. doi: 10.1016/ S0370-2693(02)02044-0. arXiv: hep-ph/0205337.
  • [373] Christophe Ringeval et al. “Large Scale CMB Anomalies from Thawing Cosmic Strings”. In: JCAP 2016.2, 033 (Feb. 2016), p. 033. doi: 10.1088/1475-7516/2016/02/033. arXiv: 1510.01916 [astro-ph.CO].
  • [374] Christophe Ringeval and Francois R. Bouchet. “All Sky CMB Map from Cosmic Strings Integrated Sachs-Wolfe Effect”. In: Phys.Rev. D86 (2012), p. 023513. doi: 10.1103/PhysRevD. 86.023513. arXiv: 1204.5041 [astro-ph.CO].
  • [375] Joanes Lizarraga et al. “Constraining Topological Defects with Temperature and Polarization Anisotropies”. In: Phys.Rev. D90.10 (2014), p. 103504. doi: 10.1103/PhysRevD.90.103504. arXiv: 1408.4126 [astro-ph.CO].
  • [376] Andrei Lazanu, E. P. S. Shellard, and Martin Landriau. “CMB Power Spectrum of NambuGoto Cosmic Strings”. In: Phys. Rev. D91.8 (2015), p. 083519. doi: 10.1103/PhysRevD.91. 083519. arXiv: 1410.4860 [astro-ph.CO]. BIBLIOGRAPHY 289
  • [377] Yi-Fu Cai, Eray Sabancilar, and Tanmay Vachaspati. “Radio Bursts from Superconducting Strings”. In: Phys. Rev. D 85 (2012), p. 023530. doi: 10.1103/PhysRevD.85.023530. arXiv: 1110.1631 [astro-ph.CO].
  • [378] Yi-Fu Cai et al. “Radio Broadcasts from Superconducting Strings”. In: Phys. Rev. D 86 (2012), p. 043521. doi: 10.1103/PhysRevD.86.043521. arXiv: 1205.3170 [astro-ph.CO].
  • [379] Chiara Arina, Jan Hamann, and Yvonne Y.Y. Wong. “A Bayesian View of the Current Status of Dark Matter Direct Searches”. In: JCAP 09 (2011), p. 022. doi: 10.1088/14757516/2011/09/022. arXiv: 1105.5121 [hep-ph].
  • [380] Chiara Arina. “Bayesian Analysis of Multiple Direct Detection Experiments”. In: Phys. Dark Univ. 5-6 (2014), pp. 1–17. doi: 10.1016/j.dark.2014.03.003. arXiv: 1310.5718 [hep-ph].
  • [381] Stephen Hawking. “Gravitationally collapsed objects of very low mass”. In: Mon. Not. Roy. Astron. Soc. 152 (1971), p. 75.
  • [382] Bernard J. Carr and S. W. Hawking. “Black Holes in the Early Universe”. In: Mon. Not. Roy. Astron. Soc. 168 (1974), pp. 399–415.
  • [383] B. J. Carr. “The Primordial Black Hole Mass Spectrum”. In: ApJ 201 (Oct. 1975), pp. 1–19. doi: 10.1086/153853.
  • [384] George F. Chapline. “Cosmological Effects of Primordial Black Holes”. In: Nature 253.5489 (1975), pp. 251–252. doi: 10.1038/253251a0.
  • [385] P. Meszaros. “Primeval Black Holes and Galaxy Formation”. In: Astron. Astrophys. 38 (1975), pp. 5–13.
  • [386] N. Afshordi, P. McDonald, and D.N. Spergel. “Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures”. In: Astrophys. J. Lett. 594 (2003), pp. L71–L74. doi: 10.1086/378763. arXiv: astro-ph/0302035.
  • [387] Bernard J. Carr and M.J. Rees. “How Large Were the First Pregalactic Objects?” In: (Jan. 1984).
  • [388] Rachel Bean and Joao Magueijo. “Could Supermassive Black Holes Be Quintessential Primordial Black Holes?” In: Phys. Rev. D 66 (2002), p. 063505. doi: 10.1103/PhysRevD.66. 063505. arXiv: astro-ph/0204486.
  • [389] B.P. Abbott et al. “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs”. In: Phys. Rev. X 9.LIGO-P1800307 (2019), p. 031040. doi: 10.1103/PhysRevX.9.031040. arXiv: 1811.12907 [astro-ph.HE].
  • [390] Misao Sasaki et al. “Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914”. In: Phys. Rev. Lett. 117.RESCEU-17-16, RUP-16-7, YITP-16-43 (2016), p. 061101. doi: 10.1103/PhysRevLett.121.059901, 10.1103/PhysRevLett.117.061101. arXiv: 1603.08338 [astro-ph.CO].
  • [390] Misao Sasaki et al. “Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914”. In: Phys. Rev. Lett. 117.RESCEU-17-16, RUP-16-7, YITP-16-43 (2016), p. 061101. doi: 10.1103/PhysRevLett.121.059901, 10.1103/PhysRevLett.117.061101. arXiv: 1603.08338 [astro-ph.CO].
  • [391] R. Abbott et al. “Properties and Astrophysical Implications of the 150 Msun Binary Black Hole Merger GW190521”. In: Astrophys. J. Lett. 900.LIGO-P2000021 (2020), p. L13. doi: 10.3847/2041-8213/aba493. arXiv: 2009.01190 [astro-ph.HE]. 290 BIBLIOGRAPHY
  • [392] Misao Sasaki et al. “Primordial black holes—perspectives in gravitational wave astronomy”. In: Class. Quant. Grav. 35.6 (2018), p. 063001. doi: 10.1088/1361-6382/aaa7b4. arXiv: 1801.05235 [astro-ph.CO].
  • [393] Bernard Carr et al. “Constraints on Primordial Black Holes”. In: RESCEU-03/20; KEKCosmo-249; KEK-TH-2199; IPMU20-0024 (Feb. 2020). arXiv: 2002.12778 [astro-ph.CO].
  • [393] Bernard Carr et al. “Constraints on Primordial Black Holes”. In: RESCEU-03/20; KEKCosmo-249; KEK-TH-2199; IPMU20-0024 (Feb. 2020). arXiv: 2002.12778 [astro-ph.CO].
  • [393] Bernard Carr et al. “Constraints on Primordial Black Holes”. In: RESCEU-03/20; KEKCosmo-249; KEK-TH-2199; IPMU20-0024 (Feb. 2020). arXiv: 2002.12778 [astro-ph.CO].
  • [394] Bernard Carr and Florian Kuhnel. “Primordial Black Holes as Dark Matter: Recent Developments”. In: Ann. Rev. Nucl. Part. Sci. 70 (2020), pp. 355–394. doi: 10.1146/annurevnucl-050520-125911. arXiv: 2006.02838 [astro-ph.CO].
  • [395] Anne M. Green and Bradley J. Kavanagh. “Primordial Black Holes as a dark matter candidate”. In: J. Phys. G 48.4 (2021), p. 4. doi: 10.1088/1361-6471/abc534. arXiv: 2007.10722 [astro-ph.CO].
  • [396] S. W. Hawking. “Particle Creation by Black Holes”. In: Commun. Math. Phys. 43 (1975). Ed. by G. W. Gibbons and S. W. Hawking. [Erratum: Commun.Math.Phys. 46, 206 (1976)], pp. 199–220. doi: 10.1007/BF02345020.
  • [397] James M. Bardeen, B. Carter, and S. W. Hawking. “The Four laws of black hole mechanics”. In: Commun. Math. Phys. 31 (1973), pp. 161–170. doi: 10.1007/BF01645742.
  • [398] Don N. Page. “Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole”. In: Phys. Rev. D 13 (1976), pp. 198–206. doi: 10.1103/ PhysRevD.13.198.
  • [399] Jane H. MacGibbon. “Quark and gluon jet emission from primordial black holes. 2. The Lifetime emission”. In: Phys. Rev. D 44 (1991), pp. 376–392. doi: 10.1103/PhysRevD.44. 376.
  • [400] Jane H. MacGibbon, Bernard J. Carr, and Don N. Page. “Do Evaporating Black Holes Form Photospheres?” In: Phys. Rev. D 78 (2008), p. 064043. doi: 10.1103/PhysRevD.78.064043. arXiv: 0709.2380 [astro-ph].
  • [401] B. V. Vainer and P. D. Naselskii. “Cosmological implications of the process of primordial black hole evaporation”. In: Soviet Astronomy 55 (Apr. 1978), p. 231.
  • [402] Ia. B. Zeldovich et al. “Primordial black holes and the deuterium problem”. In: Soviet Astronomy Letters 3 (June 1977), pp. 110–112.
  • [403] D. Lindley. “Primordial black holes and the cosmic baryon number”. In: Mon. Not. R. Astron. Soc. 196 (July 1981), pp. 317–338. doi: 10.1093/mnras/196.2.317.
  • [404] Don N. Page and S. W. Hawking. “Gamma rays from primordial black holes”. In: Astrophys. J. 206 (1976), pp. 1–7. doi: 10.1086/154350.
  • [405] Jane H. MacGibbon and Bernard J. Carr. “Cosmic rays from primordial black holes”. In: Astrophys. J. 371 (1991), pp. 447–469. doi: 10.1086/169909.
  • [406] P. N. Okele and M. J. Rees. “Observational consequences of positron production by evaporating black holes”. In: Astron. Astrophys. 81 (1980), pp. 263–264.
  • [407] William DeRocco and Peter W. Graham. “Constraining Primordial Black Hole Abundance with the Galactic 511 keV Line”. In: Phys. Rev. Lett. 123.25 (2019), p. 251102. doi: 10. 1103/PhysRevLett.123.251102. arXiv: 1906.07740 [astro-ph.CO]. BIBLIOGRAPHY 291
  • [408] Mathieu Boudaud and Marco Cirelli. “Voyager 1 e± Further Constrain Primordial Black Holes as Dark Matter”. In: Phys. Rev. Lett. 122.4 (2019), p. 041104. doi: 10 . 1103 / PhysRevLett.122.041104. arXiv: 1807.03075 [astro-ph.HE].
  • [409] Edward L. Wright. “On the density of pbh’s in the galactic halo”. In: Astrophys. J. 459 (1996), p. 487. doi: 10.1086/176910. arXiv: astro-ph/9509074.
  • [410] R. Lehoucq et al. “New constraints on the primordial black hole number density from Galactic gamma-ray astronomy”. In: Astron. Astrophys. 502 (2009), p. 37. doi: 10.1051/00046361/200911961. arXiv: 0906.1648 [astro-ph.HE].
  • [411] B. J. Carr et al. “Constraints on primordial black holes from the Galactic gamma-ray background”. In: Phys. Rev. D 94.4 (2016), p. 044029. doi: 10.1103/PhysRevD.94.044029. arXiv: 1604.05349 [astro-ph.CO].
  • [412] Bohdan Paczynski. “Gravitational microlensing by the galactic halo”. In: Astrophys. J. 304 (1986), pp. 1–5. doi: 10.1086/164140.
  • [413] Hiroko Niikura et al. “Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations”. In: Nature Astron. 3.6 (2019), pp. 524–534. doi: 10 . 1038 / s41550-019-0723-1. arXiv: 1701.02151 [astro-ph.CO].
  • [414] R. Benton Metcalf and Joseph Silk. “New Constraints on Macroscopic Compact Objects as a Dark Matter Candidate from Gravitational Lensing of Type Ia Supernovae”. In: Phys. Rev. Lett. 98 (2007), p. 071302. doi: 10.1103/PhysRevLett.98.071302. arXiv: astroph/0612253.
  • [415] Andrew Gould. “Femtolensing of Gamma-Ray Bursters”. In: ApJ 386 (Feb. 1992), p. L5. doi: 10.1086/186279.
  • [416] Andrey Katz et al. “Femtolensing by Dark Matter Revisited”. In: JCAP 12 (2018), p. 005. doi: 10.1088/1475-7516/2018/12/005. arXiv: 1807.11495 [astro-ph.CO].
  • [417] Peter W. Graham, Surjeet Rajendran, and Jaime Varela. “Dark Matter Triggers of Supernovae”. In: Phys. Rev. D 92.6 (2015), p. 063007. doi: 10.1103/PhysRevD.92.063007. arXiv: 1505.04444 [hep-ph].
  • [418] Fabio Capela, Maxim Pshirkov, and Peter Tinyakov. “Constraints on primordial black holes as dark matter candidates from capture by neutron stars”. In: Phys. Rev. D 87.12 (2013), p. 123524. doi: 10.1103/PhysRevD.87.123524. arXiv: 1301.4984 [astro-ph.CO].
  • [419] Jaiyul Yoo, Julio Chaname, and Andrew Gould. “The end of the MACHO era: limits on halo dark matter from stellar halo wide binaries”. In: Astrophys. J. 601 (2004), pp. 311–318. doi: 10.1086/380562. arXiv: astro-ph/0307437.
  • [420] C. G. Lacey and J. P. Ostriker. “Massive black holes in galactic halos ?” In: ApJ 299 (Dec. 1985), pp. 633–652. doi: 10.1086/163729.
  • [421] B. J. Carr. “On the cosmological density of black holes.” In: Comments on Astrophysics 7.5 (Jan. 1978), pp. 161–173.
  • [422] B. J. Carr. “Pregalactic black hole accretion and the thermal history of the universe”. In: MNRAS 194 (Feb. 1981), pp. 639–668. doi: 10.1093/mnras/194.3.639.
  • [423] Massimo Ricotti, Jeremiah P. Ostriker, and Katherine J. Mack. “Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates”. In: Astrophys. J. 680 (2008), p. 829. doi: 10.1086/587831. arXiv: 0709.0524 [astro-ph]. 292 BIBLIOGRAPHY
  • [424] Daniele Gaggero et al. “Searching for Primordial Black Holes in the radio and X-ray sky”. In: Phys. Rev. Lett. 118.24 (2017), p. 241101. doi: 10.1103/PhysRevLett.118.241101. arXiv: 1612.00457 [astro-ph.HE].
  • [425] B. J. Carr. “Cosmological gravitational waves - Their origin and consequences”. In: A&A 89.1-2 (Sept. 1980), pp. 6–21.
  • [426] Ryo Saito and Jun’ichi Yokoyama. “Gravitational wave background as a probe of the primordial black hole abundance”. In: Phys. Rev. Lett. 102 (2009). [Erratum: Phys.Rev.Lett. 107, 069901 (2011)], p. 161101. doi: 10.1103/PhysRevLett.102.161101. arXiv: 0812.4339 [astro-ph].
  • [427] Karsten Jedamzik, Martin Lemoine, and Jerome Martin. “Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation”. In: JCAP 1009 (2010), p. 034. doi: 10.1088/1475-7516/2010/09/034. arXiv: 1002.3039 [astro-ph.CO].
  • [428] Richard Easther, Raphael Flauger, and James B. Gilmore. “Delayed Reheating and the Breakdown of Coherent Oscillations”. In: JCAP 1104 (2011), p. 027. doi: 10.1088/14757516/2011/04/027. arXiv: 1003.3011 [astro-ph.CO].
  • [429] J. Kevorkian and J. D. Cole. Multiple Scale and Singular Perturbation Methods. Springer New York, 1996. doi: 10.1007/978-1-4612-3968-0. url: https://doi.org/10.1007%2F9781-4612-3968-0.
  • [429] J. Kevorkian and J. D. Cole. Multiple Scale and Singular Perturbation Methods. Springer New York, 1996. doi: 10.1007/978-1-4612-3968-0. url: https://doi.org/10.1007%2F9781-4612-3968-0.
  • [430] J´ erˆ ome Martin, Theodoros Papanikolaou, and Vincent Vennin. “Primordial Black Holes from the Preheating Instability in Single-Field Inflation”. In: JCAP 01 (2020), p. 024. doi: 10.1088/1475-7516/2020/01/024. arXiv: 1907.04236 [astro-ph.CO].
  • [431] Anne M. Green and Karim A. Malik. “Primordial Black Hole Production Due to Preheating”. In: Phys. Rev. D 64 (2001), p. 021301. doi: 10.1103/PhysRevD.64.021301. arXiv: hepph/0008113.
  • [432] Theodoros Papanikolaou, Vincent Vennin, and David Langlois. “Gravitational Waves from a Universe Filled with Primordial Black Holes”. In: (Oct. 2020). arXiv: 2010.11573 [astro-ph.CO].
  • [433] Karsten Jedamzik, Martin Lemoine, and Jerome Martin. “Generation of Gravitational Waves during Early Structure Formation between Cosmic Inflation and Reheating”. In: JCAP 04 (2010), p. 021. doi: 10.1088/1475-7516/2010/04/021. arXiv: 1002.3278 [astro-ph.CO].
  • [434] J´ erˆ ome Martin et al. “Metric Preheating and Radiative Decay in Single-Field Inflation”. In: JCAP 05 (2020), p. 003. doi: 10.1088/1475-7516/2020/05/003. arXiv: 2002.01820 [astro-ph.CO].
  • [435] Viatcheslav F. Mukhanov and G. V. Chibisov. “Quantum Fluctuations and a Nonsingular Universe”. In: JETP Lett. 33 (1981), pp. 532–535.
  • [436] Hideo Kodama and Misao Sasaki. “Cosmological Perturbation Theory”. In: Prog. Theor. Phys. Suppl. 78 (1984), pp. 1–166. doi: 10.1143/PTPS.78.1.
  • [437] Viatcheslav F. Mukhanov, H. A. Feldman, and Robert H. Brandenberger. “Theory of Cosmological Perturbations. Part 1. Classical Perturbations. Part 2. Quantum Theory of Perturbations. Part 3. Extensions”. In: Phys. Rept. 215.BROWN-HET-796, BROWN-HET-800, BROWN-HET-780 (1992), pp. 203–333. doi: 10.1016/0370-1573(92)90044-Z.
  • [438] F. Finelli and Robert H. Brandenberger. “Parametric Amplification of Gravitational Fluctuations during Reheating”. In: Phys. Rev. Lett. 82.BROWN-HET-1142 (1999), pp. 1362– 1365. doi: 10.1103/PhysRevLett.82.1362. arXiv: hep-ph/9809490. BIBLIOGRAPHY 293
  • [439] Sergio M.C.V. Goncalves. “Black Hole Formation from Massive Scalar Field Collapse in the Einstein-de Sitter Universe”. In: Phys. Rev. D 62 (2000), p. 124006. doi: 10.1103/ PhysRevD.62.124006. arXiv: gr-qc/0008039.
  • [440] Andreas Albrecht et al. “Reheating an Inflationary Universe”. In: Phys. Rev. Lett. 48.UPR0189T, EFI-82-09-CHICAGO (1982), p. 1437. doi: 10.1103/PhysRevLett.48.1437.
  • [441] L.F. Abbott, Edward Farhi, and Mark B. Wise. “Particle Production in the New Inflationary Cosmology”. In: Phys. Lett. B 117.MIT-CTP-983 (1982), p. 29. doi: 10.1016/03702693(82)90867-X.
  • [442] Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky. “Towards the Theory of Reheating after Inflation”. In: Phys. Rev. D 56.IFA-97-28, SU-ITP-97-18 (1997), pp. 3258–3295. doi: 10.1103/PhysRevD.56.3258. arXiv: hep-ph/9704452.
  • [443] W.˜H. Press and P Schechter. “Formation of Galaxies and Clusters of Galaxies by SelfSimilar Gravitational Condensation”. In: \apj 187 (1974), pp. 425–438. doi: 10 . 1086 / 152650.
  • [444] J.A. Peacock and A.F. Heavens. “Alternatives to the Press-Schechter Cosmological Mass Function”. In: Mon. Not. Roy. Astron. Soc. 243 (1990), pp. 133–143.
  • [445] Richard G. Bower. “The Evolution of Groups of Galaxies in the Press-Schechter Formalism”. In: Mon. Not. Roy. Astron. Soc. 248 (1991), p. 332.
  • [446] J.R. Bond et al. “Excursion Set Mass Functions for Hierarchical Gaussian Fluctuations”. In: Astrophys. J. 379.CFPA-TH-90-015 (1991), p. 440. doi: 10.1086/170520.
  • [447] Marcello Musso and Ravi K. Sheth. “The Importance of Stepping up in the Excursion Set Approach”. In: Mon. Not. Roy. Astron. Soc. 438.3 (2014), pp. 2683–2693. doi: 10.1093/ mnras/stt2387. arXiv: 1306.0551 [astro-ph.CO].
  • [448] Farnik Nikakhtar et al. “The Excursion Set Approach: Stratonovich Approximation and Cholesky Decomposition”. In: Mon. Not. Roy. Astron. Soc. 478.4 (2018), pp. 5296–5300. doi: 10.1093/mnras/sty1415. arXiv: 1802.04207 [astro-ph.CO].
  • [449] Cedric G. Lacey and Shaun Cole. “Merger Rates in Hierarchical Models of Galaxy Formation”. In: Mon. Not. Roy. Astron. Soc. 262 (1993), pp. 627–649.
  • [450] Jun Zhang and Lam Hui. “On Random Walks with a General Moving Barrier”. In: Astrophys. J. 641 (2006), pp. 641–646. doi: 10.1086/499802. arXiv: astro-ph/0508384.
  • [451] A. Buonocore et al. “On the Two-Boundary First-Crossing-Time Problem for Diffusion Processes”. In: Journal of Applied Probability 27.1 (1990), 102?114. doi: 10.2307/3214598.
  • [452] S. P. Bhavsar and J. D. Barrow. “First Ranked Galaxies in Groups and Clusters”. In: Mon. Not. Roy. Astron. Soc. 213 (Apr. 1985), pp. 857–869. doi: 10.1093/mnras/213.4.857.
  • [453] Azadeh Moradinezhad Dizgah, Gabriele Franciolini, and Antonio Riotto. “Primordial Black Holes from Broad Spectra: Abundance and Clustering”. In: JCAP 11.11 (2019), p. 001. doi: 10.1088/1475-7516/2019/11/001. arXiv: 1906.08978 [astro-ph.CO].
  • [454] James M. Bardeen et al. “The Statistics of Peaks of Gaussian Random Fields”. In: Astrophys. J. 304.FERMILAB-PUB-85-148-A, NSF-ITP-85-93 (1986), pp. 15–61. doi: 10.1086/ 164143. 294 BIBLIOGRAPHY
  • [455] Aseem Paranjape and Ravi K. Sheth. “Peaks Theory and the Excursion Set Approach”. In: Mon. Not. Roy. Astron. Soc. 426 (2012), pp. 2789–2796. doi: 10.1111/j.1365-2966.2012. 21911.x. arXiv: 1206.3506 [astro-ph.CO].
  • [456] Andrew D. Gow et al. “The Power Spectrum on Small Scales: Robust Constraints and Comparing PBH Methodologies”. In: (Aug. 2020). arXiv: 2008.03289 [astro-ph.CO].
  • [457] Karsten Jedamzik. “The Cloud in Cloud Problem in the Press-Schechter Formalism of Hierarchical Structure Formation”. In: Astrophys. J. 448 (1995), pp. 1–17. doi: 10.1086/175936. arXiv: astro-ph/9408080.
  • [458] T. Yano, M. Nagashima, and N. Gouda. “Limitation of the Press-Schechter Formalism”. In: Astrophys. J. 466.OU-TAP-20 (1996), p. 1. doi: 10.1086/177488. arXiv: astro-ph/ 9504073.
  • [459] Masahiro Nagashima. “A Solution to the Missing Link in the Press-Schechter Formalism”. In: Astrophys. J. 562.NAOJ-TH-AP-2001-44 (2001), p. 7. doi: 10.1086/323490. arXiv: astro-ph/0108480.
  • [460] Matthew W. Choptuik. “Universality and Scaling in Gravitational Collapse of a Massless Scalar Field”. In: Phys. Rev. Lett. 70.FPRINT-92-33 (1993), pp. 9–12. doi: 10 . 1103 / PhysRevLett.70.9.
  • [461] Charles R. Evans and Jason S. Coleman. “Observation of Critical Phenomena and Selfsimilarity in the Gravitational Collapse of Radiation Fluid”. In: Phys. Rev. Lett. 72.TAR-039UNC (1994), pp. 1782–1785. doi: 10.1103/PhysRevLett.72.1782. arXiv: gr-qc/9402041.
  • [462] Tatsuhiko Koike, Takashi Hara, and Satoshi Adachi. “Critical Behavior in Gravitational Collapse of Radiation Fluid: A Renormalization Group (Linear Perturbation) Analysis”. In: Phys. Rev. Lett. 74.TIT-HEP-284, COSMO-53, TIT-HEP-284-COSMO-53 (1995), pp. 5170– 5173. doi: 10.1103/PhysRevLett.74.5170. arXiv: gr-qc/9503007.
  • [463] Carsten Gundlach. “Critical Phenomena in Gravitational Collapse”. In: Living Rev. Rel. 2 (1999), p. 4. arXiv: gr-qc/0001046.
  • [464] Carsten Gundlach. “Critical Phenomena in Gravitational Collapse”. In: Phys. Rept. 376 (2003), pp. 339–405. doi: 10.1016/S0370-1573(02)00560-4. arXiv: gr-qc/0210101.
  • [465] Jens C. Niemeyer and K. Jedamzik. “Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes”. In: Phys. Rev. Lett. 80 (1998), pp. 5481–5484. doi: 10.1103/PhysRevLett.80.5481. arXiv: astro-ph/9709072.
  • [466] Ilia Musco, John C. Miller, and Alexander G. Polnarev. “Primordial Black Hole Formation in the Radiative Era: Investigation of the Critical Nature of the Collapse”. In: Class. Quant. Grav. 26 (2009), p. 235001. doi: 10.1088/0264-9381/26/23/235001. arXiv: 0811.1452 [gr-qc].
  • [467] Ilia Musco and John C. Miller. “Primordial Black Hole Formation in the Early Universe: Critical Behaviour and Self-Similarity”. In: Class. Quant. Grav. 30 (2013), p. 145009. doi: 10.1088/0264-9381/30/14/145009. arXiv: 1201.2379 [gr-qc].
  • [468] Christian T. Byrnes et al. “Primordial Black Holes with an Accurate QCD Equation of State”. In: JCAP 08 (2018), p. 041. doi: 10.1088/1475- 7516/2018/08/041. arXiv: 1801.06138 [astro-ph.CO]. BIBLIOGRAPHY 295
  • [469] Ilia Musco. “Threshold for Primordial Black Holes: Dependence on the Shape of the Cosmological Perturbations”. In: Phys. Rev. D 100.12 (2019), p. 123524. doi: 10.1103/PhysRevD. 100.123524. arXiv: 1809.02127 [gr-qc].
  • [470] Sam Young. “The Primordial Black Hole Formation Criterion Re-Examined: Parameterisation, Timing, and the Choice of Window Function”. In: Int. J. Mod. Phys. D 29.02 (2019), p. 2030002. doi: 10.1142/S0218271820300025. arXiv: 1905.01230 [astro-ph.CO].
  • [471] Sam Young and Marcello Musso. “Application of Peaks Theory to the Abundance of Primordial Black Holes”. In: arXiv:2001.06469 [astro-ph, physics:gr-qc, physics:hep-th] (Jan. 2020). arXiv: 2001.06469 [astro-ph, physics:gr-qc, physics:hep-th].
  • [471] Sam Young and Marcello Musso. “Application of Peaks Theory to the Abundance of Primordial Black Holes”. In: arXiv:2001.06469 [astro-ph, physics:gr-qc, physics:hep-th] (Jan. 2020). arXiv: 2001.06469 [astro-ph, physics:gr-qc, physics:hep-th].
  • [472] Teruaki Suyama and Shuichiro Yokoyama. “A Novel Formulation of the PBH Mass Function”. In: PTEP 2020.2 (2020), 023E03. doi: 10.1093/ptep/ptaa011. arXiv: 1912.04687 [astro-ph.CO].
  • [473] Cristiano Germani and Ravi K. Sheth. “Nonlinear Statistics of Primordial Black Holes from Gaussian Curvature Perturbations”. In: Phys. Rev. D 101.ICCUB-19-021 (2020), p. 063520. doi: 10.1103/PhysRevD.101.063520. arXiv: 1912.07072 [astro-ph.CO].
  • [474] Karim A. Malik and David Wands. “Cosmological Perturbations”. In: Phys. Rept. 475 (2009), pp. 1–51. doi: 10.1016/j.physrep.2009.03.001. arXiv: 0809.4944 [astro-ph].
  • [475] David Wands et al. “A New Approach to the Evolution of Cosmological Perturbations on Large Scales”. In: Phys. Rev. D62 (2000), p. 043527. doi: 10.1103/PhysRevD.62.043527. arXiv: astro-ph/0003278.
  • [476] Sam Young, Christian T. Byrnes, and Misao Sasaki. “Calculating the Mass Fraction of Primordial Black Holes”. In: JCAP 1407 (2014), p. 045. doi: 10.1088/1475-7516/2014/ 07/045. arXiv: 1405.7023 [gr-qc].
  • [477] Tomohiro Harada et al. “Cosmological Long-Wavelength Solutions and Primordial Black Hole Formation”. In: Phys. Rev. D 91.RUP-15-5, RESCEU-4-15 (2015), p. 084057. doi: 10.1103/PhysRevD.91.084057. arXiv: 1503.03934 [gr-qc].
  • [478] Tomohiro Harada, Chul-Moon Yoo, and Kazunori Kohri. “Threshold of Primordial Black Hole Formation”. In: Phys. Rev. D 88.RUP-13-9, KEK-COSMO-129, KEK-TH-1668 (2013), p. 084051. doi: 10.1103/PhysRevD.88.084051. arXiv: 1309.4201 [astro-ph.CO].
  • [479] Viatcheslav F. Mukhanov. “Gravitational Instability of the Universe Filled with a Scalar Field”. In: JETP Lett. 41 (1985), pp. 493–496.
  • [480] Viatcheslav F. Mukhanov. “Quantum Theory of Gauge Invariant Cosmological Perturbations”. In: Sov.Phys.JETP 67 (1988), pp. 1297–1302.
  • [481] Jerome Martin, Christophe Ringeval, and Vincent Vennin. “Encyclopædia Inflationaris”. In: Phys. Dark Univ. 5-6 (2014), pp. 75–235. doi: 10.1016/j.dark.2014.01.003. arXiv: 1303.3787 [astro-ph.CO].
  • [482] David Polarski and Alexei A. Starobinsky. “Semiclassicality and Decoherence of Cosmological Perturbations”. In: Class. Quant. Grav. 13.LMPM-95-4 (1996), pp. 377–392. doi: 10.1088/0264-9381/13/3/006. arXiv: gr-qc/9504030.
  • [483] J. Lesgourgues, David Polarski, and Alexei A. Starobinsky. “Quantum to Classical Transition of Cosmological Perturbations for Nonvacuum Initial States”. In: Nucl. Phys. B497.LMPT10-96 (1997), pp. 479–510. doi: 10.1016/S0550-3213(97)00224-1. arXiv: gr-qc/9611019. 296 BIBLIOGRAPHY
  • [484] Claus Kiefer and David Polarski. “Why Do Cosmological Perturbations Look Classical to Us?” In: Adv. Sci. Lett. 2 (2009), pp. 164–173. doi: 10.1166/asl.2009.1023. arXiv: 0810.0087 [astro-ph].
  • [485] Jerome Martin and Vincent Vennin. “Quantum Discord of Cosmic Inflation: Can We Show That CMB Anisotropies Are of Quantum-Mechanical Origin?” In: Phys. Rev. D93.2 (2016), p. 023505. doi: 10.1103/PhysRevD.93.023505. arXiv: 1510.04038 [astro-ph.CO].
  • [486] Tomohiro Harada et al. “Primordial Black Hole Formation in the Matter-Dominated Phase of the Universe”. In: Astrophys. J. 833.RUP-16-25, OCU-PHYS-454, AP-GR-134, KEKTH-1929, KEK-COSMO-197 (2016), p. 61. doi: 10.3847/1538-4357/833/1/61. arXiv: 1609.01588 [astro-ph.CO].
  • [487] Edward Witten. “Cosmic Separation of Phases”. In: Phys. Rev. D 30 (1984), pp. 272–285. doi: 10.1103/PhysRevD.30.272.
  • [488] C.J. Hogan. “Gravitational radiation from cosmological phase transitions”. In: MNRAS 218 (1986), pp. 629–636. doi: https://doi.org/10.1093/mnras/218.4.629.
  • [489] Michael S. Turner and Frank Wilczek. “Relic gravitational waves and extended inflation”. In: Phys. Rev. Lett. 65 (1990), pp. 3080–3083. doi: 10.1103/PhysRevLett.65.3080.
  • [490] Arthur Kosowsky, Michael S. Turner, and Richard Watkins. “Gravitational radiation from colliding vacuum bubbles”. In: Phys. Rev. D 45 (1992), pp. 4514–4535. doi: 10.1103/ PhysRevD.45.4514.
  • [491] Arthur Kosowsky and Michael S. Turner. “Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions”. In: Phys. Rev. D 47 (1993), pp. 4372–4391. doi: 10.1103/PhysRevD.47.4372. arXiv: astro-ph/9211004.
  • [492] K. Kajantie et al. “Is there a hot electroweak phase transition at m(H) larger or equal to m(W)?” In: Phys. Rev. Lett. 77 (1996), pp. 2887–2890. doi: 10.1103/PhysRevLett.77.2887. arXiv: hep-ph/9605288.
  • [493] Chiara Caprini et al. “Detecting gravitational waves from cosmological phase transitions with LISA: an update”. In: JCAP 03 (2020), p. 024. doi: 10.1088/1475-7516/2020/03/024. arXiv: 1910.13125 [astro-ph.CO].
  • [494] Daniel Cutting et al. “Gravitational waves from vacuum first order phase transitions II: from thin to thick walls”. In: Phys. Rev. D 103.2 (2021), p. 023531. doi: 10.1103/PhysRevD. 103.023531. arXiv: 2005.13537 [astro-ph.CO].
  • [495] Thomas Konstandin. “Gravitational radiation from a bulk flow model”. In: JCAP 03 (2018), p. 047. doi: 10.1088/1475-7516/2018/03/047. arXiv: 1712.06869 [astro-ph.CO].
  • [496] Ryusuke Jinno and Masahiro Takimoto. “Gravitational waves from bubble collisions: An analytic derivation”. In: Phys. Rev. D 95.2 (2017), p. 024009. doi: 10.1103/PhysRevD.95. 024009. arXiv: 1605.01403 [astro-ph.CO].
  • [497] Ryusuke Jinno and Masahiro Takimoto. “Gravitational waves from bubble dynamics: Beyond the Envelope”. In: JCAP 01 (2019), p. 060. doi: 10.1088/1475-7516/2019/01/060. arXiv: 1707.03111 [hep-ph].
  • [498] Mark Hindmarsh et al. “Shape of the acoustic gravitational wave power spectrum from a first order phase transition”. In: Phys. Rev. D96.10 (2017), p. 103520. doi: 10.1103/PhysRevD. 96.103520. arXiv: 1704.05871 [astro-ph.CO]. BIBLIOGRAPHY 297
  • [499] Ryusuke Jinno, Thomas Konstandin, and Henrique Rubira. “A hybrid simulation of gravitational wave production in first-order phase transitions”. In: JCAP 04 (2021), p. 014. doi: 10.1088/1475-7516/2021/04/014. arXiv: 2010.00971 [astro-ph.CO].
  • [500] John Ellis, Marek Lewicki, and Jos´ e Miguel No. “Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source”. In: JCAP 07 (2020), p. 050. doi: 10.1088/1475-7516/2020/07/050. arXiv: 2003.07360 [hep-ph].
  • [501] John Ellis et al. “Gravitational wave energy budget in strongly supercooled phase transitions”. In: JCAP 06 (2019), p. 024. doi: 10.1088/1475- 7516/2019/06/024. arXiv: 1903.09642 [hep-ph].
  • [502] Ue-Li Pen and Neil Turok. “Shocks in the Early Universe”. In: Phys. Rev. Lett. 117.13 (2016), p. 131301. doi: 10.1103/PhysRevLett.117.131301. arXiv: 1510.02985 [astro-ph.CO].
  • [503] Daniel Cutting, Mark Hindmarsh, and David J. Weir. “Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions”. In: (June 2019). arXiv: 1906.00480 [hep-ph].
  • [504] Chiara Caprini and Ruth Durrer. “Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields”. In: Phys. Rev. D 74 (2006), p. 063521. doi: 10.1103/PhysRevD.74.063521. arXiv: astro-ph/0603476.
  • [505] Grigol Gogoberidze, Tina Kahniashvili, and Arthur Kosowsky. “The Spectrum of Gravitational Radiation from Primordial Turbulence”. In: Phys. Rev. D 76 (2007), p. 083002. doi: 10.1103/PhysRevD.76.083002. arXiv: 0705.1733 [astro-ph].
  • [506] Tina Kahniashvili et al. “Gravitational Radiation from Primordial Helical Inverse Cascade MHD Turbulence”. In: Phys. Rev. D 78 (2008). [Erratum: Phys.Rev.D 79, 109901 (2009)], p. 123006. doi: 10.1103/PhysRevD.78.123006. arXiv: 0809.1899 [astro-ph].
  • [507] Tina Kahniashvili, Grigol Gogoberidze, and Bharat Ratra. “Gravitational Radiation from Primordial Helical MHD Turbulence”. In: Phys. Rev. Lett. 100 (2008), p. 231301. doi: 10. 1103/PhysRevLett.100.231301. arXiv: 0802.3524 [astro-ph].
  • [508] Chiara Caprini, Ruth Durrer, and Geraldine Servant. “The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition”. In: JCAP 12 (2009), p. 024. doi: 10.1088/1475-7516/2009/12/024. arXiv: 0909.0622 [astro-ph.CO].
  • [509] Chiara Caprini, Ruth Durrer, and Elisa Fenu. “Can the observed large scale magnetic fields be seeded by helical primordial fields?” In: JCAP 11 (2009), p. 001. doi: 10.1088/14757516/2009/11/001. arXiv: 0906.4976 [astro-ph.CO].
  • [510] Peter Niksa, Martin Schlederer, and G¨ unter Sigl. “Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions”. In: Class. Quant. Grav. 35.14 (2018), p. 144001. doi: 10.1088/1361-6382/aac89c. arXiv: 1803.02271 [astro-ph.CO].
  • [511] Robert H. Kraichnan. “Kolmogorov’s Hypotheses and Eulerian Turbulence Theory”. In: The Physics of Fluids 7.11 (1964), pp. 1723–1734. doi: 10.1063/1.2746572. eprint: https: //aip.scitation.org/doi/pdf/10.1063/1.2746572. url: https://aip.scitation. org/doi/abs/10.1063/1.2746572. 298 BIBLIOGRAPHY
  • [511] Robert H. Kraichnan. “Kolmogorov’s Hypotheses and Eulerian Turbulence Theory”. In: The Physics of Fluids 7.11 (1964), pp. 1723–1734. doi: 10.1063/1.2746572. eprint: https: //aip.scitation.org/doi/pdf/10.1063/1.2746572. url: https://aip.scitation. org/doi/abs/10.1063/1.2746572. 298 BIBLIOGRAPHY
  • [511] Robert H. Kraichnan. “Kolmogorov’s Hypotheses and Eulerian Turbulence Theory”. In: The Physics of Fluids 7.11 (1964), pp. 1723–1734. doi: 10.1063/1.2746572. eprint: https: //aip.scitation.org/doi/pdf/10.1063/1.2746572. url: https://aip.scitation. org/doi/abs/10.1063/1.2746572. 298 BIBLIOGRAPHY
  • [512] Alberto Roper Pol et al. “The timestep constraint in solving the gravitational wave equations sourced by hydromagnetic turbulence”. In: Geophys. Astrophys. Fluid Dynamics 114.12 (2020), pp. 130–161. doi: 10 . 1080 / 03091929 . 2019 . 1653460. arXiv: 1807 . 05479 [physics.flu-dyn].
  • [513] Alberto Roper Pol et al. “Numerical simulations of gravitational waves from early-universe turbulence”. In: Phys. Rev. D 102.8 (2020), p. 083512. doi: 10.1103/PhysRevD.102.083512. arXiv: 1903.08585 [astro-ph.CO].
  • [514] Tina Kahniashvili et al. “Circular polarization of gravitational waves from early-Universe helical turbulence”. In: Phys. Rev. Res. 3.1 (2021), p. 013193. doi: 10.1103/PhysRevResearch. 3.013193. arXiv: 2011.05556 [astro-ph.CO].
  • [515] Axel Brandenburg et al. “The scalar, vector, and tensor modes in gravitational wave turbulence simulations”. In: (Mar. 2021). arXiv: 2103.01140 [gr-qc].
  • [516] Chiara Caprini et al. “General Properties of the Gravitational Wave Spectrum from Phase Transitions”. In: Phys. Rev. D 79 (2009), p. 083519. doi: 10.1103/PhysRevD.79.083519. arXiv: 0901.1661 [astro-ph.CO].
  • [517] Axel Brandenburg et al. “Evolution of hydromagnetic turbulence from the electroweak phase transition”. In: Phys. Rev. D 96.12 (2017), p. 123528. doi: 10.1103/PhysRevD.96.123528. arXiv: 1711.03804 [astro-ph.CO].
  • [518] Guo-Wei He, Meng Wang, and Sanjiva K. Lele. “On the computation of space-time correlations by large-eddy simulation”. In: Physics of Fluids 16.11 (2004), pp. 3859–3867. doi: 10 . 1063 / 1 . 1779251. eprint: https : / / doi . org / 10 . 1063 / 1 . 1779251. url: https : //doi.org/10.1063/1.1779251.
  • [519] P. Olesen. “On inverse cascades in astrophysics”. In: Phys. Lett. B 398 (1997), pp. 321–325. doi: 10.1016/S0370-2693(97)00235-9. arXiv: astro-ph/9610154.
  • [520] Axel Brandenburg and Tina Kahniashvili. “Classes of hydrodynamic and magnetohydrodynamic turbulent decay”. In: Phys. Rev. Lett. 118.5 (2017), p. 055102. doi: 10.1103/ PhysRevLett.118.055102. arXiv: 1607.01360 [physics.flu-dyn].
  • [521] Marc G. Genton. “Classes of Kernels for Machine Learning: A Statistics Perspective”. In: J. Mach. Learn. Res. 2 (Mar. 2002), pp. 299–312. issn: 1532-4435.
  • [522] K. Enqvist et al. “Nucleation and bubble growth in a first order cosmological electroweak phase transition”. In: Phys.Rev. D45 (1992), pp. 3415–3428. doi: 10.1103/PhysRevD.45. 3415.
  • [523] Axel Brandenburg, Kari Enqvist, and Poul Olesen. “Large scale magnetic fields from hydromagnetic turbulence in the very early universe”. In: Phys. Rev. D 54 (1996), pp. 1291–1300. doi: 10.1103/PhysRevD.54.1291. arXiv: astro-ph/9602031.
  • [524] J.R. Wilson and G.J. Matthews. Relativistic Numerical Hydrodyamics. Cambridge: Cambridge University Press, 2003.
  • [525] Bram Van Leer. “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection”. In: Journal of Computational Physics 23.3 (1977), pp. 276–299. issn: 0021-9991. doi: https://doi.org/10.1016/0021-9991(77)90095-X. url: https: //www.sciencedirect.com/science/article/pii/002199917790095X. BIBLIOGRAPHY 299
  • [526] Peter Anninos and P. Chris Fragile. “Non-oscillatory central difference and artificial viscosity schemes for relativistic hydrodynamics”. In: Astrophys. J. Suppl. 144 (2003), p. 243. doi: 10.1086/344723. arXiv: astro-ph/0206265.
  • [527] P. A. Davidson. Turbulence: An Introduction for Scientists and Engineers. en. Oxford, UK ; New York: Oxford University Press, 2004. isbn: 978-0-19-852948-4.
  • [527] P. A. Davidson. Turbulence: An Introduction for Scientists and Engineers. en. Oxford, UK ; New York: Oxford University Press, 2004. isbn: 978-0-19-852948-4.
  • [528] T. von Karman. “Progress in the Statistical Theory of Turbulence”. en. In: Proceedings of the National Academy of Sciences 34.11 (Nov. 1948), pp. 530–539. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.34.11.530.
  • [529] Yukio Kaneda. “Lagrangian and Eulerian Time Correlations in Turbulence”. en. In: Physics of Fluids A: Fluid Dynamics 5.11 (Nov. 1993), pp. 2835–2845. issn: 0899-8213. doi: 10. 1063/1.858747.
  • [530] Yu-Hong Dong and Pierre Sagaut. “A Study of Time Correlations in Lattice BoltzmannBased Large-Eddy Simulation of Isotropic Turbulence”. en. In: Physics of Fluids 20.3 (Mar. 2008), p. 035105. issn: 1070-6631, 1089-7666. doi: 10.1063/1.2842381.
  • [531] M. Wilczek and Y. Narita. “Wave-Number–Frequency Spectrum for Turbulence from a Random Sweeping Hypothesis with Mean Flow”. en. In: Phys. Rev. E 86.6 (Dec. 2012), p. 066308. issn: 1539-3755, 1550-2376. doi: 10.1103/PhysRevE.86.066308.
  • [532] T. Sanada and V. Shanmugasundaram. “Random Sweeping Effect in Isotropic Numerical Turbulence”. en. In: Physics of Fluids A: Fluid Dynamics 4.6 (June 1992), pp. 1245–1250. issn: 0899-8213. doi: 10.1063/1.858242.
  • [533] Yukio Kaneda and Toshiyuki Gotoh. “Lagrangian Velocity Autocorrelation in Isotropic Turbulence”. en. In: Physics of Fluids A: Fluid Dynamics 3.8 (Aug. 1991), pp. 1924–1933. issn: 0899-8213. doi: 10.1063/1.857922.
  • [534] J. Mercer. “Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations”. In: Philosophical Transactions of the Royal Society of London Series A 209 (Jan. 1909), pp. 415–446. doi: 10.1098/rsta.1909.0016.
  • [535] Salomon Bochner and T Teichmann. “Harmonic analysis and the theory of probability”. In: Physics Today 9.3 (1956), p. 22.
  • [536] R. Silverman. “Locally stationary random processes”. In: IRE Transactions on Information Theory 3.3 (1957), pp. 182–187. doi: 10.1109/TIT.1957.1057413.
  • [537] Dave Higdon, Jenise Swall, and J Kern. “Non-stationary spatial modeling”. In: Bayesian statistics 6.1 (1999), pp. 761–768.
  • [538] G. Peter Lepage. “A new algorithm for adaptive multidimensional integration”. In: Journal of Computational Physics 27.2 (May 1978), pp. 192–203. doi: 10.1016/0021-9991(78)900049.